<機器學習實戰>讀書筆記--樸素貝葉斯
1.樸素貝葉斯法是基於貝葉斯定理與特徵條件獨立假設的分類方法,
最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBM)
2.樸素貝葉斯公式
P(B|A)的意思是在A事件的情況下,發生B事件的概率。
3.樸素貝葉斯模型
a是獨立的特徵屬性集合:
用來計算不同的獨立特徵的條件概率
相關推薦
<機器學習實戰>讀書筆記--樸素貝葉斯
1.樸素貝葉斯法是基於貝葉斯定理與特徵條件獨立假設的分類方法, 最為廣泛的兩種分類模型是決策樹模型(Decision Tree Model)和樸素貝葉斯模型(Naive Bayesian Model,NBM) 2.樸素貝葉斯公式 P(B|A)的意思是在A事件的情況下,發生B事件的概率。 3.樸素貝
機器學習實戰(三)樸素貝葉斯NB(Naive Bayes)
目錄 0. 前言 1. 條件概率 2. 樸素貝葉斯(Naive Bayes) 3. 樸素貝葉斯應用於文字分類 4. 實戰案例 4.1. 垃圾郵件分類案例 學習完機器學習實戰的樸素貝葉斯,簡單的做個筆記。文中
《機器學習實戰》之四——樸素貝葉斯
這裡寫自定義目錄標題 《機器學習實戰》之四——樸素貝葉斯 一. 數學部分 二. 準備資料階段 三. NB訓練函式 針對演算法部分的改進 四. NB分類函式 五. 測試NB分類函式 六. 使用樸素貝葉斯進行垃
機器學習實戰第四章——樸素貝葉斯分類(原始碼解析)
樸素貝葉斯分類 #coding=utf-8 ''' Created on 2016年1月9日 @author: admin ''' from numpy import * # 載入資料集函式 def loadDataSet(): # 定義郵件列表 p
機器學習實戰(4)——樸素貝葉斯(下)
一、大概框架1、貝葉斯決策:對某個資料點進行分類,有多個類別供你選擇,我們自然要選擇可能性最大那個,這就是貝葉斯決策的核心思想舉個例子:如果你面前有一個黑人,讓你判斷他是哪個洲的人,給你三個選擇:亞洲人、非洲人、美洲人,你會選擇哪個?哈哈哈,這麼簡單的問題,你居然還問的出口,
機器學習之路: python 樸素貝葉斯分類器 預測新聞類別
groups group news ckey put epo test electron final 使用python3 學習樸素貝葉斯分類api 設計到字符串提取特征向量 歡迎來到我的git下載源代碼: https://github.com/linyi0604/kag
機器學習(十二)樸素貝葉斯分類
樸素貝葉斯分類 作者:hjimce 本篇博文是我學習《機器學習實戰》這邊書時候的學習筆記。記得之前看到這個演算法名的時候,我以為很難,因為我不是很喜歡概率論的知識,其實最主要的原因是因為已經概率論的相關知識都忘光了,所以一直不想去複習,於是就覺得這個演算法不好學。不
機器學習-23:MachineLN之樸素貝葉斯
你要的答案或許都在這裡:小鵬的部落格目錄 學習樸素貝葉斯需要清楚下面幾個概念: 貝葉斯模型是指模型引數的推斷用的是貝葉斯估計方法,也就是需要指定先驗分佈,再求取後驗分佈。 貝葉斯分類是一類演算
機器學習演算法(三)——樸素貝葉斯演算法及R語言實現方法
樸素貝葉斯演算法也是一種常用的分類演算法,尤其在對文字文件分類的學習任務中,樸素貝葉斯分類是最有效的演算法之一。所謂的樸素,即假設在給定目標值時屬性值之間相互條件獨立,雖然這一假設看似不合理,但其最終的分類效果卻普遍較好。 一、概述 1、貝葉斯公式 2、最大後驗假設(MA
機器學習-帶你搞懂樸素貝葉斯分類演算法
帶你搞懂樸素貝葉斯分類演算法 你搞懂樸素貝葉斯分類算 貝葉斯分類是一類分類演算法的總稱,這類演算法均以貝葉斯定理為基礎,故統稱為貝葉斯分類。而樸素樸素貝葉斯分類是貝葉斯分類中最簡單,也是常見的一種分類方法。這篇文章我儘可能用直白的話語總結一下我們學習會上講到的樸素貝葉斯分
白話機器學習演算法(九)樸素貝葉斯
樸素貝葉斯,確實很樸素,原理也很簡單,但是用途很厲害;很多涉及概率的機器學習演算法都要用到這些東西:最大似然估計(MLE),貝葉斯估計(最大後驗MAP),EM(也是最大似然估計,只是方法不同),最大熵; 先說點廢話,再寫點公式吧: 最大似然估計:我取什麼樣的引數,使得當前資
Python《機器學習實戰》讀書筆記(四)——樸素貝葉斯
第四章 基於概率論的分類方法:樸素貝葉斯 4-1 基於貝葉斯決策理論的分類方法 優點:在資料較小的情況下仍然有效,可以處理多類別問題 缺點:對於輸入資料的準備方式較為敏感。 適用資料型別:標稱型資料。 假設現在我們有一個數據集,它由兩類資
《機器學習實戰》——讀書筆記1
前言 在大學裡,最好的方面不是你研修的課程或從事的研究,而是一些外圍活動:與人會面、參加研討會、加入組織、旁聽課程,以及學習未知的知識。 一個機構會僱傭一些理論家(思考者)以及一些做實際工作的人(執行者)。前者可能會將大部分時間花在學術工作上,他們的日常工作就是基於論文產
《機器學習實戰》讀書筆記2:K-近鄰(kNN)演算法 & 原始碼分析
宣告:文章是讀書筆記,所以必然有大部分內容出自《機器學習實戰》。外加個人的理解,另外修改了部分程式碼,並添加了註釋 1、什麼是K-近鄰演算法? 簡單地說,k-近鄰演算法採用測量不同特徵值之間距離的方法進行分類。不恰當但是形象地可以表述為近朱者赤,近墨者黑
《機器學習實戰》學習筆記---樸素貝葉斯(Bayes)演算法
作為一名機器學習小白,將自己的學習經歷寫下來,一方面為了總結和回顧,另一方面希望能得到各路大神的批評指正,若能給他人帶來便利就更好不過了。 演算法優缺點: (1)優點:在資料較少的情況下,依然有效,可以處理多分類問題; (2)缺點:對輸入資料的準備方
機器學習入門之《統計學習方法》筆記——樸素貝葉斯法
樸素貝葉斯(naive Bayes)法是基於貝葉斯定理與特徵條件獨立假設的分類方法。 目錄 樸素貝葉斯法 設輸入空間X⊆RnX⊆Rn 為nn 維向量的集合,輸出空間為類標記集合Y={c1,c2,...,cK}Y={c1,c2,...,
<Machine Learning in Action >之二 樸素貝葉斯 C#實現文章分類
options 直升機 water 飛機 math mes 視頻 write mod def trainNB0(trainMatrix,trainCategory): numTrainDocs = len(trainMatrix) numWords =
《統計學習方法》筆記——樸素貝葉斯演算法
樸素貝葉斯演算法概述 樸素貝葉斯(naive Bayes)法是基於貝葉斯定理與特徵條件獨立假設的分類方法。對於給定的訓練資料集,首先基於特徵條件獨立假設學習輸入/輸出的聯合概率分佈;然後基於此模型,對於給定的輸入x,利用貝葉斯定理求出後驗概率最大的輸出y。
【機器學習】(5):貝葉斯決策定理
其中,P(C|x)表示觀測到資料x時事件C發生的條件概率,我們稱為後驗概率(posterior probability);P(C)=P(C=1)是事件C=1發生時的概率,稱為先驗概率(prior probabilty),因為這是在觀察到資料x之前就已經得到的關於C的知識;P(x|C)稱為類似然,與
自動化機器學習(AutoML)之自動貝葉斯調參
一、Python實現自動貝葉斯調整超引數 【導讀】機器學習中,調參是一項繁瑣但至關重要的任務,因為它很大程度上影響了演算法的效能。手動調參十分耗時,網格和隨機搜尋不需要人力,但需要很長的執行時間。因此,誕生了許多自動調整超引數的方法。貝葉斯優化是一種用模型找到函