1. 程式人生 > >Python標準模組--concurrent.futures模組(ThreadPoolExecutor:執行緒池,提供非同步呼叫、ProcessPoolExecutor: 程序池,提供非同步呼叫)

Python標準模組--concurrent.futures模組(ThreadPoolExecutor:執行緒池,提供非同步呼叫、ProcessPoolExecutor: 程序池,提供非同步呼叫)

目錄

ProcessPoolExecutor: 程序池

ThreadPoolExecutor:執行緒池 

map的用法 

回撥函式


https://docs.python.org/dev/library/concurrent.futures.html

1 介紹
concurrent.futures模組提供了高度封裝的非同步呼叫介面
ThreadPoolExecutor:執行緒池,提供非同步呼叫
ProcessPoolExecutor: 程序池,提供非同步呼叫
Both implement the same interface, which is defined by the abstract Executor class.

2 基本方法
●submit(fn, *args, **kwargs)
非同步提交任務

●map(func, *iterables, timeout=None, chunksize=1) 
取代for迴圈submit的操作

●shutdown(wait=True) 
相當於程序池的pool.close()+pool.join()操作
wait=True,等待池內所有任務執行完畢回收完資源後才繼續
wait=False,立即返回,並不會等待池內的任務執行完畢
但不管wait引數為何值,整個程式都會等到所有任務執行完畢
submit和map必須在shutdown之前

●result(timeout=None)
取得結果

●add_done_callback(fn)
回撥函式

ProcessPoolExecutor: 程序池

#介紹
The ProcessPoolExecutor class is an Executor subclass that uses a pool of processes to execute calls asynchronously. ProcessPoolExecutor uses the multiprocessing module, which allows it to side-step the Global Interpreter Lock but also means that only picklable objects can be executed and returned.

class concurrent.futures.ProcessPoolExecutor(max_workers=None, mp_context=None)
An Executor subclass that executes calls asynchronously using a pool of at most max_workers processes. If max_workers is None or not given, it will default to the number of processors on the machine. If max_workers is lower or equal to 0, then a ValueError will be raised.


#用法
from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ProcessPoolExecutor(max_workers=3)

    futures=[]
    for i in range(11):
        future=executor.submit(task,i)
        futures.append(future)
    executor.shutdown(True)
    print('+++>')
    for future in futures:
        print(future.result())

ThreadPoolExecutor:執行緒池 

#介紹
ThreadPoolExecutor is an Executor subclass that uses a pool of threads to execute calls asynchronously.
class concurrent.futures.ThreadPoolExecutor(max_workers=None, thread_name_prefix='')
An Executor subclass that uses a pool of at most max_workers threads to execute calls asynchronously.

Changed in version 3.5: If max_workers is None or not given, it will default to the number of processors on the machine, multiplied by 5, assuming that ThreadPoolExecutor is often used to overlap I/O instead of CPU work and the number of workers should be higher than the number of workers for ProcessPoolExecutor.

New in version 3.6: The thread_name_prefix argument was added to allow users to control the threading.Thread names for worker threads created by the pool for easier debugging.

#用法
與ProcessPoolExecutor相同

ThreadPoolExecutor


map的用法 

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor

import os,time,random
def task(n):
    print('%s is runing' %os.getpid())
    time.sleep(random.randint(1,3))
    return n**2

if __name__ == '__main__':

    executor=ThreadPoolExecutor(max_workers=3)

    # for i in range(11):
    #     future=executor.submit(task,i)

    executor.map(task,range(1,12)) #map取代了for+submit


回撥函式

from concurrent.futures import ThreadPoolExecutor,ProcessPoolExecutor
from multiprocessing import Pool
import requests
import json
import os

def get_page(url):
    print('<程序%s> get %s' %(os.getpid(),url))
    respone=requests.get(url)
    if respone.status_code == 200:
        return {'url':url,'text':respone.text}

def parse_page(res):
    res=res.result()
    print('<程序%s> parse %s' %(os.getpid(),res['url']))
    parse_res='url:<%s> size:[%s]\n' %(res['url'],len(res['text']))
    with open('db.txt','a') as f:
        f.write(parse_res)


if __name__ == '__main__':
    urls=[
        'https://www.baidu.com',
        'https://www.python.org',
        'https://www.openstack.org',
        'https://help.github.com/',
        'http://www.sina.com.cn/'
    ]

    # p=Pool(3)
    # for url in urls:
    #     p.apply_async(get_page,args=(url,),callback=pasrse_page)
    # p.close()
    # p.join()

    p=ProcessPoolExecutor(3)
    for url in urls:
        p.submit(get_page,url).add_done_callback(parse_page) #parse_page拿到的是一個future物件obj,需要用obj.result()拿到結果