SparkStreaming消費Kafka中的資料 使用zookeeper和MySQL儲存偏移量的兩種方式
阿新 • • 發佈:2018-11-17
Spark讀取Kafka資料的方式有兩種,一種是receiver方式,另一種是直連方式。今天分享的SparkStreaming消費Kafka中的資料儲存偏移量的兩種方式都是基於直連方式上的
話不多說 直接上程式碼 !
第一種是使用zookeeper儲存偏移量
object KafkaDirectZookeeper { def main(args: Array[String]): Unit = { val group = "DirectAndZk" val conf = new SparkConf().setAppName("KafkaDirectWordCount").setMaster("local[2]") val ssc = new StreamingContext(conf, Duration(5000)) val topic = "ditopic" //指定kafka的broker地址(sparkStream的Task直連到kafka的分割槽上,用更加底層的API消費,效率更高) val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092" //指定zk的地址,後期更新消費的偏移量時使用(以後可以使用Redis、MySQL來記錄偏移量) val zkQuorum = "hadoop01:2181,hadoop02:2181,hadoop03:2181" //建立 stream 時使用的 topic 名字集合,SparkStreaming可同時消費多個topic val topics: Set[String] = Set(topic) //建立一個 ZKGroupTopicDirs 物件,其實是指定往zk中寫入資料的目錄,用於儲存偏移量 val topicDirs = new ZKGroupTopicDirs(group, topic) // new ZKGroupTopicDirs() //獲取 zookeeper 中的路徑 "/g001/offsets/wordcount/" val zkTopicPath = s"${topicDirs.consumerOffsetDir}" //準備kafka的引數 val kafkaParams = Map( "metadata.broker.list" -> brokerList, "group.id" -> group, //從頭開始讀取資料 "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString ) //zookeeper 的host 和 ip,建立一個 client,用於跟新偏移量量的 //是zookeeper的客戶端,可以從zk中讀取偏移量資料,並更新偏移量 val zkClient = new ZkClient(zkQuorum) //查詢該路徑下是否位元組點(預設有位元組點為我們自己儲存不同 partition 時生成的) // /g001/offsets/wordcount/0/10001" // /g001/offsets/wordcount/1/30001" // /g001/offsets/wordcount/2/10001" //zkTopicPath -> /g001/offsets/wordcount/ val children = zkClient.countChildren(zkTopicPath) var kafkaStream: InputDStream[(String, String)] = null //如果 zookeeper 中有儲存 offset,我們會利用這個 offset 作為 kafkaStream 的起始位置 var fromOffsets: Map[TopicAndPartition, Long] = Map() //如果儲存過 offset if (children > 0) { for (i <- 0 until children) { // /g001/offsets/wordcount/0/10001 // /g001/offsets/wordcount/0 val partitionOffset = zkClient.readData[String](s"$zkTopicPath/${i}") // wordcount/0 val tp = TopicAndPartition(topic, i) //將不同 partition 對應的 offset 增加到 fromOffsets 中 // wordcount/0 -> 10001 fromOffsets += (tp -> partitionOffset.toLong) } //Key: kafka的key values: "hello tom hello jerry" //這個會將 kafka 的訊息進行 transform,最終 kafak 的資料都會變成 (kafka的key, message) 這樣的 tuple val messageHandler = (mmd: MessageAndMetadata[String, String]) => (mmd.key(), mmd.message()) //通過KafkaUtils建立直連的DStream(fromOffsets引數的作用是:按照前面計算好了的偏移量繼續消費資料) //[String, String, StringDecoder, StringDecoder, (String, String)] // key value key的解碼方式 value的解碼方式 kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)](ssc, kafkaParams, fromOffsets, messageHandler) } else { //如果未儲存,根據 kafkaParam 的配置使用最新(largest)或者最舊的(smallest) offset kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder](ssc, kafkaParams, topics) } //偏移量的範圍 var offsetRanges = Array[OffsetRange]() //如果你呼叫了DStream的Transformation,就不能使用直連方式 kafkaStream.foreachRDD { kafkaRDD => //只有KafkaRDD可以強轉成HasOffsetRanges,並獲取到偏移量 offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges //val lines: RDD[String] = kafkaRDD.map(_._2) //對RDD進行操作,觸發Action lines.foreachPartition(partition => partition.foreach(x => { println(x) }) ) for (o <- offsetRanges) { // /g001/offsets/wordcount/0 val zkPath = s"${topicDirs.consumerOffsetDir}/${o.partition}" //將該 partition 的 offset 儲存到 zookeeper // /g001/offsets/wordcount/0/20000 ZkUtils.updatePersistentPath(zkClient, zkPath, o.untilOffset.toString) } } ssc.start() ssc.awaitTermination() } }
第二種是通過MySQL儲存偏移量
注意:這種方式使用的是scalikejdbc
匯入以下依賴
<dependency> <groupId>org.scalikejdbc</groupId> <artifactId>scalikejdbc_2.11</artifactId> <version>2.5.0</version> </dependency> <dependency> <groupId>org.scalikejdbc</groupId> <artifactId>scalikejdbc-core_2.11</artifactId> <version>2.5.0</version> </dependency> <dependency> <groupId>org.scalikejdbc</groupId> <artifactId>scalikejdbc-config_2.11</artifactId> <version>2.5.0</version> </dependency>
需要配置以下資料庫連線
db.default.driver="com.mysql.jdbc.Driver"
db.default.url="jdbc:mysql://localhost:3306/test?characterEncoding="utf-8""
db.default.user="root"
db.default.password="root"
import com.alibaba.fastjson.{JSON, JSONObject} import kafka.common.TopicAndPartition import kafka.message.{Message, MessageAndMetadata} import kafka.serializer.StringDecoder import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.streaming.dstream.InputDStream import org.apache.spark.streaming.kafka.KafkaCluster.Err import org.apache.spark.streaming.kafka.{HasOffsetRanges, KafkaCluster, KafkaUtils} import org.apache.spark.streaming.{Seconds, StreamingContext} import scalikejdbc.{DB, SQL} import scalikejdbc.config.DBs object SparkStreamingOffsetMysql { def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("ssom").setMaster("local[2]") val ssc = new StreamingContext(conf, Seconds(3)) val groupId = "didi" val brokerList = "hadoop01:9092,hadoop02:9092,hadoop03:9092" val topic = "ditopic" val topics = Set(topic) val kafkas = Map( "metadata.broker.list" -> brokerList, "group.id" -> groupId, "auto.offset.reset" -> kafka.api.OffsetRequest.SmallestTimeString) DBs.setup() // 直接查詢mysql中的offset val fromOffset: Map[TopicAndPartition, Long] = DB.readOnly { implicit session => { SQL(s"select * from offset where groupId = '${groupId}'") //查詢出來後 將資料賦值給元組 .map(m => (TopicAndPartition( m.string("topic"), m.int("partitions")), m.long("untilOffset"))) .toList().apply() }.toMap //最後要toMap因為前面的返回值已經給定 } //建立一個InputDStram 然後根據offset讀取資料 var kafkaStream: InputDStream[(String, String)] = null //從mysql中獲取資料進行判斷 if (fromOffset.size == 0) { //如果程式第一次啟動 kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder]( ssc, kafkas, topics) } else { //如果程式不是第一次啟動 var checckOffset = Map[TopicAndPartition, Long]() val kafkaCluster = new KafkaCluster(kafkas) val earliesOffset: Either[Err, Map[TopicAndPartition, KafkaCluster.LeaderOffset]] = kafkaCluster.getEarliestLeaderOffsets(fromOffset.keySet) //然後開始比較大小 用Mysql中的offset和kafka的offset進行比較 if (earliesOffset.isRight) { val topicAndPartitionOffset: Map[TopicAndPartition, KafkaCluster.LeaderOffset] = earliesOffset.right.get //來個直接進行比較大小 fromOffset.map(owner => { //取kafka彙總的offset val topicOffset = topicAndPartitionOffset.get(owner._1).get.offset if (owner._2 > topicOffset) { owner } else { (owner._1, topicOffset) } }) } val messageHandler = (mmd: MessageAndMetadata[String, String]) => { (mmd.key(), mmd.message()) } kafkaStream = KafkaUtils.createDirectStream[String, String, StringDecoder, StringDecoder, (String, String)]( ssc, kafkas, checckOffset, messageHandler) } kafkaStream.foreachRDD(kafkaRDD => { val offsetRanges = kafkaRDD.asInstanceOf[HasOffsetRanges].offsetRanges kafkaRDD.map(_._2).foreachPartition(partition => partition.foreach(x => { println(x) }) DB.localTx { implicit session => for (os <- offsetRanges) { /* SQL("update offset set groupId=?,topic=?,partitions=?,untilOffset=?") .bind(groupId,os.topic,os.partition,os.untilOffset).update().apply()*/ SQL("replace into offset(groupId,topic,partitions,untilOffset) values(?,?,?,?)") .bind(groupId, os.topic, os.partition, os.untilOffset).update().apply() } } }) ssc.start() ssc.awaitTermination() } }