1. 程式人生 > >/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py:816: pandas 處理 NaN

/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py:816: pandas 處理 NaN

這裡記錄一下犯過的及其傻帽的錯誤!!!!哈哈,無語,同時討論一下NaN這個資料型別的處理

/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison result = getattr(x, name)(y)

....................

TypeError: invalid type comparison

這裡有一個優惠券的scv表:

import numpy as np
import pandas as pd
dfoff = pd.read_csv("datalab/4901/ccf_offline_stage1_train.csv")
dfofftest = pd.read_csv("datalab/4901/ccf_offline_stage1_test_revised.csv")
dfoff.head()

筆者這裡的目的是想統計出 Coupon_id是非NaN(非空)且Date是NaN(空)的使用者數(行數)

----------------------------------------------------------------------------------------------------------------------------------------------------------------

一般來說比如我們想篩選出 Discount_rate是20:1且Distance不是1.0的行數可以這麼做:

dfoff.info()
print('數目是:',dfoff[(dfoff['Discount_rate']=='20:1')&(dfoff['Date']!=1.0)].shape[0])

--------------------------------------------------------------------------------------------------------------------------------------------------------------------

於是筆者這樣做了篩選:

dfoff.info()
print('有優惠券,但是沒有使用優惠券購買的客戶有',dfoff[(dfoff['Coupon_id']!='NaN')&(dfoff['Date']=='NaN')].shape[0])

結果報錯:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1754884 entries, 0 to 1754883
Data columns (total 7 columns):
User_id          int64
Merchant_id      int64
Coupon_id        float64
Discount_rate    object
Distance         float64
Date_received    float64
Date             float64
dtypes: float64(4), int64(2), object(1)
memory usage: 93.7+ MB

/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py:816: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
  result = getattr(x, name)(y)

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-24-c27c94978405> in <module>()
      1 dfoff.info()
----> 2 print('有優惠券,但是沒有使用優惠券購買的客戶有',dfoff[(dfoff['Coupon_id']!='NaN')&(dfoff['Date']=='NaN')].shape[0])

/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py in wrapper(self, other, axis)
    877 
    878             with np.errstate(all='ignore'):
--> 879                 res = na_op(values, other)
    880             if is_scalar(res):
    881                 raise TypeError('Could not compare {typ} type with Series'

/opt/conda/lib/python3.6/site-packages/pandas/core/ops.py in na_op(x, y)
    816                     result = getattr(x, name)(y)
    817                 if result is NotImplemented:
--> 818                     raise TypeError("invalid type comparison")
    819             except AttributeError:
    820                 result = op(x, y)

TypeError: invalid type comparison

 

其實吧原因很簡單,注意看上面筆者故意標紅的地方,Coupon_id Date的資料型別都是float64,而程式碼中卻用了dfoff['Coupon_id']!='NaN',這不是字串嘛!!!!!!

print(type('NaN'))
<class 'str'>

float和str比較當然報錯了是吧,哎!能這樣直接去比較我也算是極品啦哈哈哈

於是可以使用其內建的方法解決:

dfoff.info()
print('有優惠券,但是沒有使用優惠券購買的客戶有',dfoff[(dfoff['Coupon_id'].notnull())&(dfoff['Date'].isnull())].shape[0])

即使用瞭如下兩個方法

.notnull()
.isnull()

其作用就是判斷是否是空值,如果csv中的NaN的地方換成null同樣適用

同時這裡說一下怎麼將NaN替換掉:例如替換成0.0

dfoff['Coupon_id']=dfoff['Coupon_id'].replace(np.nan, 0.0)

-----------------------------------------------------------------------------------------------------------------------------------------------------------

下面來說一下NaN這個資料型別,它的全稱應該是not a number,說到這裡不得不提到另外一個數據型別inf

相同點:都是代表一個無法表示的數

不同點:inf代表無窮大,是一個超過浮點表示範圍的浮點數,而NaN可以看成是缺少值或者是無理數

假設現在有一段程式:

def ConvertRate(row):
    if row.isnull():
        return 0
    elif ':' in str(row):
        rows = str(row).split(':')
        return 1.0-float(rows[1])/float(rows[0])
    else:
        return float(row)
dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)
print(dfoff.head(3))

 

會發現報錯:

---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-3-0aa06185ee75> in <module>()
      7     else:
      8         return float(row)
----> 9 dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)
     10 print(dfoff.head(3))

/opt/conda/lib/python3.6/site-packages/pandas/core/series.py in apply(self, func, convert_dtype, args, **kwds)
   2549             else:
   2550                 values = self.asobject
-> 2551                 mapped = lib.map_infer(values, f, convert=convert_dtype)
   2552 
   2553         if len(mapped) and isinstance(mapped[0], Series):

pandas/_libs/src/inference.pyx in pandas._libs.lib.map_infer()

<ipython-input-3-0aa06185ee75> in ConvertRate(row)
      1 def ConvertRate(row):
----> 2     if row.isnull():
      3         return 0
      4     elif ':' in str(row):
      5         rows = str(row).split(':')

AttributeError: 'float' object has no attribute 'isnull'

那它到底是什麼資料型別呢?

print(type(np.nan))
print(type(np.inf))
<class 'float'>
<class 'float'>

NaN'就是表示一個普通的字串,而np.nan就是代表真真的nan,那我們可不可以使用這樣:

def ConvertRate(row):
    if row==np.nan:
        return 0
    elif ':' in str(row):
        rows = str(row).split(':')
        return 1.0-float(rows[1])/float(rows[0])
    else:
        return float(row)
dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)
print(dfoff.head(3))
   User_id  Merchant_id  Coupon_id Discount_rate  Distance  Date_received  \
0  1439408         2632        NaN           NaN       0.0            NaN   
1  1439408         4663    11002.0        150:20       1.0     20160528.0   
2  1439408         2632     8591.0          20:1       0.0     20160217.0   

         Date  discount_rate  
0  20160217.0            NaN  
1         NaN       0.866667  
2         NaN       0.950000  

可以看到這裡還是NaN,並不是0,說明還是不對

那試一下:

def ConvertRate(row):
    if row==float('NaN'):
        return 0
    elif ':' in str(row):
        rows = str(row).split(':')
        return 1.0-float(rows[1])/float(rows[0])
    else:
        return float(row)
dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)
print(dfoff.head(3))

結果還是如上面,其實NaN資料型別就是一種特殊的float,這裡相當於強制型別轉化

那到底怎麼辦呢?其實判斷是否是NaN可以使用如下方法:

row!=row

如果結果是真,那麼就是NaN,假就代表不是NaN

可以看一下結果:

def ConvertRate(row):
    if row!=row:
        return 0
    elif ':' in str(row):
        rows = str(row).split(':')
        return 1.0-float(rows[1])/float(rows[0])
    else:
        return float(row)
dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)
print(dfoff.head(3))
print(dfoff.head(3))
   User_id  Merchant_id  Coupon_id Discount_rate  Distance  Date_received  \
0  1439408         2632        NaN           NaN       0.0            NaN   
1  1439408         4663    11002.0        150:20       1.0     20160528.0   
2  1439408         2632     8591.0          20:1       0.0     20160217.0   

         Date  discount_rate  
0  20160217.0       0.000000  
1         NaN       0.866667  
2         NaN       0.950000  

於是筆者最開始的那個問題也可以這樣解決:

print('有優惠券,但是沒有使用優惠券購買的客戶有',dfoff[(dfoff['Coupon_id']==dfoff['Coupon_id'])&(dfoff['Date']!=dfoff['Date'])].shape[0])
有優惠券,但是沒有使用優惠券購買的客戶有 977900

---------------------------------------------------------------------------------------------------------------------------------------------------------------

有時候在使用apply的時候會報錯,所以最好加一下:axis = 1意思是按列處理的

對應到上面就是吧:

dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate)

改為:

dfoff['discount_rate'] = dfoff['Discount_rate'].apply(ConvertRate,axis = 1)

------------------------------------------------------------------------------------------------------------------------------------------------------------

所以最後總結一下:

NaN和inf都是一種特殊的float資料型別

可以使用row!=row類似的形式來判斷是否是NaN,如果是真就代表是NaN,假就代表不是NaN,換句話說也可以使用row==row來判斷是否是NaN,只不過邏輯相反而已

報錯記得加axis = 1