1. 程式人生 > >Katu Puzzle[2-SAT]

Katu Puzzle[2-SAT]

傳送門

2-sat

主要的思想是將一個點拆為兩個點

如 點x變成x與x+n 其中x表示選0,x+n表示x選1

我們建立好關係後tarjan縮點,如果x與x+n在一個強聯通分量,那麼就是衝突的(x必須選0又必須選1)

本題如何建立關係

1.a&b = 0 , 如果a是1,b就是必須是0 於是a+n向b 連邊,b+n向a連邊

2.a&b = 1 , 表示a,b都為1,於是a向a+n,b向b+n連邊 , 表示如果a取0,那麼a必須取1

3.a|b = 0 ,類似2 , a+n向a,b+n向b連邊

4.a|b = 1 , 類似1, a是0,b就必須是1 於是a向b+n,b向a+n連邊

5.a^b = 0 , a,b相同 , 於是a->b , b->a , a+n->b+n , b+n->a+n

6.a^b = 1 , a,b 不同, 於是a->b+n , b->a+n , a+n -> b , b+n -> a

注意這裡的邊都是有向邊,因為這些關係只能單方面推出


#include<iostream>
#include<cstdio>
#define N 1005*2
#define M 1000050*4
using namespace std;
int first[N],next[M],to[M],tot;
int n,m,flag; char s[10];
int dfn[N],low[N],sta[N],insta[N],sign,top,id[N],sum;
int read(){
	int cnt=0;char ch=0;
	while(!isdigit(ch)) ch=getchar();
	while(isdigit(ch))cnt=cnt*10+(ch-'0'),ch=getchar();
	return cnt;
}
void add(int x,int y){
	next[++tot]=first[x],first[x]=tot,to[tot]=y;
}
void dfs(int u){
	dfn[u]=low[u]=++sign;
	sta[++top]=u,insta[u]=1;
	for(int i=first[u];i;i=next[i]){
		int t=to[i]; 
		if(!dfn[t]) dfs(t),low[u]=min(low[u],low[t]);
		else if(insta[t] && dfn[t]<low[u]) low[u]=dfn[t];
	}
	if(low[u]==dfn[u]){
		sum++;do{
			id[sta[top]]=sum,insta[sta[top]]=0;
		}while(sta[top--]!=u);
	}
}
int main(){
	n=read(),m=read();
	for(int i=1;i<=m;i++){
		int x=read()+1,y=read()+1,z=read(); scanf("%s",s);
		if(s[0]=='A') {
			if(z==0) add(x+n,y),add(y+n,x);
			if(z==1) add(x,x+n),add(y,y+n);
		}
		if(s[0]=='O'){
			if(z==0) add(x+n,x),add(y+n,y);
			if(z==1) add(x,y+n),add(y,x+n);
		}
		if(s[0]=='X'){
			if(z==0) add(x,y),add(y,x),add(x+n,y+n),add(y+n,x+n);
			if(z==1) add(x,y+n),add(y,x+n),add(x+n,y),add(y+n,x);
		}
	}
	for(int i=1;i<=n*2;i++) if(!dfn[i]) dfs(i);
	for(int i=1;i<=n;i++) if(id[i]==id[i+n]) flag=1;
	if(flag) printf("NO"); else printf("YES"); return 0;
}