JavaScript-WebGL2學習筆記二-從外部load shader
阿新 • • 發佈:2018-11-19
在前一篇的基礎上做了以下修改
[1]shader改為從url中獲取
[2]去掉了四個頂點顏色的輸入,改為根據頂點同左下角的距離在fragment shader中計算著色.
現在有四個原始檔組成這個demo
html檔案
<html> <head> <!-- Date: 2018-3-19 Author: kagula Prologue: WebGL2的例子 Prologue: Description: 顯示一個左下角紅色,右上角白色的rectangle. Original: [1]https://my.oschina.net/thesadabc/blog/1592866 測試環境 [1]Chrome 65.0.3325.162 [2]nginx 1.12.2 --> <title>第二個Webgl2程式</title> <meta charset="utf-8"> <!-- gl-matrix version 2.4.0 from http://glmatrix.net/ --> <script type="text/javascript" src="/gl-matrix-min.js"></script> <script type="text/javascript" src="/kagula/webgl2_helper.js"></script> </head> <body> <canvas id="glCanvas" width="320" height="200"></canvas> </body> </html> <script> main(); //弄4個頂點, 4個顔色, 用來演示render流程! function initBuffers(gl) { // Create a buffer for the square's positions. const positionBuffer = gl.createBuffer(); // Select the positionBuffer as the one to apply buffer // operations to from here out. gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer); // Now create an array of positions for the square. //WebGL最後會把計算好的影象資訊投影到左下角{-1,-1},右上角{1,1}的區域中。 const positions = [ 1.0, 1.0, -1.0, 1.0, 1.0, -1.0, -1.0, -1.0, ]; // Now pass the list of positions into WebGL to build the // shape. We do this by creating a Float32Array from the // JavaScript array, then use it to fill the current buffer. gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(positions), gl.STATIC_DRAW); return { position: positionBuffer }; } async function main() { //選擇器的使用 //http://www.runoob.com/jsref/met-document-queryselector.html const canvas = document.querySelector("#glCanvas"); // Initialize the GL context //為了獲取WebGL2上下文,getContext方法傳入的引數是"webgl2",而不是"webgl". const gl = canvas.getContext("webgl2"); // Only continue if WebGL is available and working if (!gl) { alert("Unable to initialize WebGL. Your browser or machine may not support it."); return; } //OpenGL ES 3.0 不支援多維陣列 //對傳入的陣列大小有限制 console.log("gl.MAX_VERTEX_UNIFORM_VECTORS=" + gl.MAX_VERTEX_UNIFORM_VECTORS + ", gl.MAX_FRAGMENT_UNIFORM_VECTORS=" + gl.MAX_FRAGMENT_UNIFORM_VECTORS); //裝配shader到shaderProgram中去 const vsSource = await loadResource("../shader/simple.vs"); const fsSource = await loadResource("../shader/simple.fs"); const shaderProgram = initShaderProgram(gl, vsSource, fsSource); //為了讓外部的資料能統一傳到shanderProgram中去,新建programInfo物件。 //vertexPosition => aVertexPosition位置 //projectionMatrix => uProjectionMatrix位置 //modelViewMatrix => uModelViewMatrix位置 //... const programInfo = { program: shaderProgram, attribLocations: { vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'), out_vpos: gl.getAttribLocation(shaderProgram, 'out_vpos'), }, uniformLocations: { projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'), modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'), }, }; //initBuffers(gl)返回要render的vertex. drawScene(gl, programInfo, initBuffers(gl)); }//main </script>
webgl2_helper.js檔案
async function loadResource(remoteFile) { try { let response = await fetch(remoteFile); return response.text(); console.log(data); } catch(e) { console.log("Oops, error", e); } } // Initialize a shader program, so WebGL knows how to draw our data function initShaderProgram(gl, vsSource, fsSource) { const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource); const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource); // Create the shader program const shaderProgram = gl.createProgram(); gl.attachShader(shaderProgram, vertexShader); gl.attachShader(shaderProgram, fragmentShader); gl.linkProgram(shaderProgram); // If creating the shader program failed, alert if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) { alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram)); return null; } return shaderProgram; } // creates a shader of the given type, uploads the source and // compiles it. function loadShader(gl, type, source) { const shader = gl.createShader(type); // Send the source to the shader object gl.shaderSource(shader, source); // Compile the shader program gl.compileShader(shader); // See if it compiled successfully if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) { alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader)); gl.deleteShader(shader); return null; } return shader; } function drawScene(gl, programInfo, buffers) { gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque gl.clearDepth(1.0); // Clear everything gl.enable(gl.DEPTH_TEST); // Enable depth testing gl.depthFunc(gl.LEQUAL); // Near things obscure far things // Clear the canvas before we start drawing on it. gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); // Create a perspective matrix, a special matrix that is // used to simulate the distortion of perspective in a camera. // Our field of view is 45 degrees, with a width/height // ratio that matches the display size of the canvas // and we only want to see objects between 0.1 units // and 100 units away from the camera. const fieldOfView = 45 * Math.PI / 180; // in radians const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight; const zNear = 0.1; const zFar = 100.0; const projectionMatrix = mat4.create(); // note: glmatrix.js always has the first argument // as the destination to receive the result. mat4.perspective(projectionMatrix, fieldOfView, aspect, zNear, zFar); // Set the drawing position to the "identity" point, which is // the center of the scene. const modelViewMatrix = mat4.create(); // Now move the drawing position a bit to where we want to // start drawing the square. mat4.translate(modelViewMatrix, // destination matrix modelViewMatrix, // matrix to translate [-0.0, 0.0, -3.0]); // amount to translate, [-0.0, 0.0, -6.0] 放到遠一點 //這裡準備vertex shader需要的資料 //整個pipeline可以看成下面的流程 //我們使用WebGL準備資料 => Vertex Shader => WebGL => Fragment Shader => WebGL => Canvas // Tell WebGL how to pull out the positions from the position // buffer into the vertexPosition attribute. { // gl.ARRAY_BUFFER => 指向 => buffers.position gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position); //指定源資料格式. //https://developer.mozilla.org/en-US/docs/Web/API/WebGLRenderingContext/vertexAttribPointer gl.vertexAttribPointer( programInfo.attribLocations.vertexPosition, 2,// pull out 2 values per iteration //Must be 1, 2, 3, or 4. 比如說頂點{x,y}要選2,{x,y,z}要選3,顏色{r,g,b,a}要選4 gl.FLOAT,// the data in the buffer is 32bit floats false,// don't normalize 0,//stride, how many bytes to get from one set of values to the next 0);//how many bytes inside the buffer to start from //源資料填充到gl //tell WebGL that this attribute should be filled with data from our array buffer. //gl.ARRAY_BUFFER => 資料傳到 => programInfo.attribLocations.vertexPosition gl.enableVertexAttribArray( programInfo.attribLocations.vertexPosition); } // Tell WebGL to use our program when drawing gl.useProgram(programInfo.program); // Set the shader uniforms //projectionMatrix => programInfo.uniformLocations.projectionMatrix gl.uniformMatrix4fv( programInfo.uniformLocations.projectionMatrix, false,//A GLboolean specifying whether to transpose the matrix. Must be false. projectionMatrix); //modelViewMatrix => programInfo.uniformLocations.modelViewMatrix gl.uniformMatrix4fv( programInfo.uniformLocations.modelViewMatrix, false, modelViewMatrix); //資料準備好後可以draw了. { const offset = 0; const vertexCount = 4; //開始處理已經在gl中的頂點資料 //gl.TRIANGLE_STRIP模式復用前面兩個頂點, 所以這裡告訴gl, render兩個三角形. gl.drawArrays(gl.TRIANGLE_STRIP, offset, vertexCount); } }
vertex shader檔案simple.vs
#version 300 es //指定float int的精度 precision highp float; precision highp int; //從裝置外部傳入的資料. in vec4 aVertexPosition; uniform mat4 uModelViewMatrix; uniform mat4 uProjectionMatrix; //這裡存放要傳給Fragment shader的資料. out vec2 frag_vpos; void main() { float curX = (aVertexPosition.x + 1.) / 2.; float curY = (aVertexPosition.y + 1.) / 2.; frag_vpos = vec2(curX, curY); //output vertex position to pipeline //通過透視投影的方式,轉3D屬性的頂點對映成2D屬性的頂點。 gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition; }
fragment shader檔案simple.fs
#version 300 es
precision highp float;
//from vertex shader
in vec2 frag_vpos;
//output to pipeline
out vec4 myOutputColor;
void main() {
float pos_x = frag_vpos.x;
float pos_y = frag_vpos.y;
float distance = sqrt(pos_x * pos_x + pos_y * pos_y);
//第四個引數為Alpha通道,1=>紅色 ,0=>白色, 所以左下角最紅
myOutputColor = vec4(1, 0, 0, 1. - distance);
}