1. 程式人生 > >連結串列排序(冒泡、選擇、插入、快排、歸併、希爾、堆排序)

連結串列排序(冒泡、選擇、插入、快排、歸併、希爾、堆排序)

參考http://www.cnblogs.com/TenosDoIt/p/3666585.html

插入排序(演算法中是直接交換節點,時間複雜度O(n^2),空間複雜度O(1)

 1 class Solution {
 2 public:
 3     ListNode *insertionSortList(ListNode *head) {
 4         // IMPORTANT: Please reset any member data you declared, as
 5         // the same Solution instance will be reused for each test case.
6 if(head == NULL || head->next == NULL)return head; 7 ListNode *p = head->next, *pstart = new ListNode(0), *pend = head; 8 pstart->next = head; //為了操作方便,新增一個頭結點 9 while(p != NULL) 10 { 11 ListNode *tmp = pstart->next, *pre = pstart; 12
while(tmp != p && p->val >= tmp->val) //找到插入位置 13 {tmp = tmp->next; pre = pre->next;} 14 if(tmp == p)pend = p; 15 else 16 { 17 pend->next = p->next; 18 p->next = tmp; 19 pre->next = p;
20 } 21 p = pend->next; 22 } 23 head = pstart->next; 24 delete pstart; 25 return head; 26 } 27 };

 


選擇排序(演算法中只是交換節點的val值,時間複雜度O(n^2),空間複雜度O(1)

 1 class Solution {
 2 public:
 3     ListNode *selectSortList(ListNode *head) {
 4         // IMPORTANT: Please reset any member data you declared, as
 5         // the same Solution instance will be reused for each test case.
 6         //選擇排序
 7         if(head == NULL || head->next == NULL)return head;
 8         ListNode *pstart = new ListNode(0);
 9         pstart->next = head; //為了操作方便,新增一個頭結點
10         ListNode*sortedTail = pstart;//指向已排好序的部分的尾部
11         
12         while(sortedTail->next != NULL)
13         {
14             ListNode*minNode = sortedTail->next, *p = sortedTail->next->next;
15             //尋找未排序部分的最小節點
16             while(p != NULL)
17             {
18                 if(p->val < minNode->val)
19                     minNode = p;
20                 p = p->next;
21             }
22             swap(minNode->val, sortedTail->next->val);
23             sortedTail = sortedTail->next;
24         }
25         
26         head = pstart->next;
27         delete pstart;
28         return head;
29     }
30 };

 


快速排序1(演算法只交換節點的val值,平均時間複雜度O(nlogn),不考慮遞迴棧空間的話空間複雜度是O(1))

這裡的partition我們參考陣列快排partition的第二種寫法(選取第一個元素作為樞紐元的版本,因為連結串列選擇最後一元素需要遍歷一遍),具體可以參考here

這裡我們還需要注意的一點是陣列的partition兩個引數分別代表陣列的起始位置,兩邊都是閉區間,這樣在排序的主函式中:

void quicksort(vector<int>&arr, int low, int high)

{

  if(low < high)

  {

   int middle = mypartition(arr, low, high);

   quicksort(arr, low, middle-1);

   quicksort(arr, middle+1, high);

  }

}

對左邊子陣列排序時,子陣列右邊界是middle-1,如果連結串列也按這種兩邊都是閉區間的話,找到分割後樞紐元middle,找到middle-1還得再次遍歷陣列,因此連結串列的partition採用前閉後開的區間(這樣排序主函式也需要前閉後開區間),這樣就可以避免上述問題

 

 

 1 class Solution {
 2 public:
 3     ListNode *quickSortList(ListNode *head) {
 4         // IMPORTANT: Please reset any member data you declared, as
 5         // the same Solution instance will be reused for each test case.
 6         //連結串列快速排序
 7         if(head == NULL || head->next == NULL)return head;
 8         qsortList(head, NULL);
 9         return head;
10     }
11     void qsortList(ListNode*head, ListNode*tail)
12     {
13         //連結串列範圍是[low, high)
14         if(head != tail && head->next != tail)
15         {
16             ListNode* mid = partitionList(head, tail);
17             qsortList(head, mid);
18             qsortList(mid->next, tail);
19         }
20     }
21     ListNode* partitionList(ListNode*low, ListNode*high)
22     {
23         //連結串列範圍是[low, high)
24         int key = low->val;
25         ListNode* loc = low;
26         for(ListNode*i = low->next; i != high; i = i->next)
27             if(i->val < key)
28             {
29                 loc = loc->next;
30                 swap(i->val, loc->val);
31             }
32         swap(loc->val, low->val);
33         return loc;
34     }
35 };

 

快速排序2(演算法交換連結串列節點,平均時間複雜度O(nlogn),不考慮遞迴棧空間的話空間複雜度是O(1))

這裡的partition,我們選取第一個節點作為樞紐元,然後把小於樞紐的節點放到一個鏈中,把不小於樞紐的及節點放到另一個鏈中,最後把兩條鏈以及樞紐連線成一條鏈。

這裡我們需要注意的是,1.在對一條子鏈進行partition時,由於節點的順序都打亂了,所以得保正重新組合成一條新連結串列時,要和該子連結串列的前後部分連線起來,因此我們的partition傳入三個引數,除了子連結串列的範圍(也是前閉後開區間),還要傳入子連結串列頭結點的前驅;2.partition後連結串列的頭結點可能已經改變

class Solution {
public:
    ListNode *quickSortList(ListNode *head) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        //連結串列快速排序
        if(head == NULL || head->next == NULL)return head;
        ListNode tmpHead(0); tmpHead.next = head;
        qsortList(&tmpHead, head, NULL);
        return tmpHead.next;
    }
    void qsortList(ListNode *headPre, ListNode*head, ListNode*tail)
    {
        //連結串列範圍是[low, high)
        if(head != tail && head->next != tail)
        {
            ListNode* mid = partitionList(headPre, head, tail);//注意這裡head可能不再指向連結串列頭了
            qsortList(headPre, headPre->next, mid);
            qsortList(mid, mid->next, tail);
        }
    }
    ListNode* partitionList(ListNode* lowPre, ListNode* low, ListNode* high)
    {
        //連結串列範圍是[low, high)
        int key = low->val;
        ListNode node1(0), node2(0);//比key小的鏈的頭結點,比key大的鏈的頭結點
        ListNode* little = &node1, *big = &node2;
        for(ListNode*i = low->next; i != high; i = i->next)
            if(i->val < key)
            {
                little->next = i;
                little = i;
            }
            else
            {
                big->next = i;
                big = i;
            }
        big->next = high;//保證子連結串列[low,high)和後面的部分連線
        little->next = low;
        low->next = node2.next;
        lowPre->next = node1.next;//為了保證子連結串列[low,high)和前面的部分連線
        return low;
    }
};

 

 


歸併排序(演算法交換連結串列節點,時間複雜度O(nlogn),不考慮遞迴棧空間的話空間複雜度是O(1))                        本文地址

首先用快慢指標的方法找到連結串列中間節點,然後遞迴的對兩個子連結串列排序,把兩個排好序的子連結串列合併成一條有序的連結串列。歸併排序應該算是連結串列排序最佳的選擇了,保證了最好和最壞時間複雜度都是nlogn,而且它在陣列排序中廣受詬病的空間複雜度在連結串列排序中也從O(n)降到了O(1)

class Solution {
public:
    ListNode *mergeSortList(ListNode *head) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        //連結串列歸併排序
        if(head == NULL || head->next == NULL)return head;
        else
        {
            //快慢指標找到中間節點
            ListNode *fast = head,*slow = head;
            while(fast->next != NULL && fast->next->next != NULL)
            {
                fast = fast->next->next;
                slow = slow->next;
            }
            fast = slow;
            slow = slow->next;
            fast->next = NULL;
            fast = sortList(head);//前半段排序
            slow = sortList(slow);//後半段排序
            return merge(fast,slow);
        }
         
    }
    // merge two sorted list to one
    ListNode *merge(ListNode *head1, ListNode *head2)
    {
        if(head1 == NULL)return head2;
        if(head2 == NULL)return head1;
        ListNode *res , *p ;
        if(head1->val < head2->val)
            {res = head1; head1 = head1->next;}
        else{res = head2; head2 = head2->next;}
        p = res;
         
        while(head1 != NULL && head2 != NULL)
        {
            if(head1->val < head2->val)
            {
                p->next = head1;
                head1 = head1->next;
            }
            else
            {
                p->next = head2;
                head2 = head2->next;
            }
            p = p->next;
        }
        if(head1 != NULL)p->next = head1;
        else if(head2 != NULL)p->next = head2;
        return res;
    }
};

 

 


氣泡排序(演算法交換連結串列節點val值,時間複雜度O(n^2),空間複雜度O(1))

class Solution {
public:
    ListNode *bubbleSortList(ListNode *head) {
        // IMPORTANT: Please reset any member data you declared, as
        // the same Solution instance will be reused for each test case.
        //連結串列快速排序
        if(head == NULL || head->next == NULL)return head;
        ListNode *p = NULL;
        bool isChange = true;
        while(p != head->next && isChange)
        {
            ListNode *q = head;
            isChange = false;//標誌當前這一輪中又沒有發生元素交換,如果沒有則表示陣列已經有序
            for(; q->next && q->next != p; q = q->next)
            {
                if(q->val > q->next->val)
                {
                    swap(q->val, q->next->val);
                    isChange = true;
                }
            }
            p = q;
        }
        return head;
    }
};