1. 程式人生 > >CodeForces - 1077D Cutting Out 優先佇列

CodeForces - 1077D Cutting Out 優先佇列

ou are given an array ss consisting of nn integers.

You have to find any array tt of length kk such that you can cut out maximum number of copies of array tt from array ss.

Cutting out the copy of tt means that for each element titi of array tt you have to find titi in ss and remove it from ss. If for some titi you cannot find such element in ss, then you cannot cut out one more copy of tt. The both arrays can contain duplicate elements.

For example, if s=[1,2,3,2,4,3,1]s=[1,2,3,2,4,3,1] and k=3k=3 then one of the possible answers is t=[1,2,3]t=[1,2,3]. This array tt can be cut out 22 times.

  • To cut out the first copy of tt you can use the elements [1,2−−,3,2,4,3−−,1−−][1,2_,3,2,4,3_,1_] (use the highlighted elements). After cutting out the first copy of tt the array sscan look like [1,3,2,4][1,3,2,4].
  • To cut out the second copy of tt you can use the elements [1−−,3−−,2−−,4][1_,3_,2_,4]. After cutting out the second copy of tt the array ss will be [4][4].

Your task is to find such array tt that you can cut out the copy of tt from ss maximum number of times. If there are multiple answers, you may choose any of them.

Input

The first line of the input contains two integers nn and kk (1≤k≤n≤2⋅1051≤k≤n≤2⋅105) — the number of elements in ss and the desired number of elements in tt, respectively.

The second line of the input contains exactly nn integers s1,s2,…,sns1,s2,…,sn (1≤si≤2⋅1051≤si≤2⋅105).

Output

Print kk integers — the elements of array tt such that you can cut out maximum possible number of copies of this array from ss. If there are multiple answers, print any of them. The required array tt can contain duplicate elements. All the elements of tt (t1,t2,…,tkt1,t2,…,tk) should satisfy the following condition: 1≤ti≤2⋅1051≤ti≤2⋅105.

Examples

Input

7 3
1 2 3 2 4 3 1

Output

1 2 3 

Input

10 4
1 3 1 3 10 3 7 7 12 3

Output

7 3 1 3

Input

15 2
1 2 1 1 1 2 1 1 2 1 2 1 1 1 1

Output

1 1 

Note

The first example is described in the problem statement.

In the second example the only answer is [7,3,1,3][7,3,1,3] and any its permutations. It can be shown that you cannot choose any other array such that the maximum number of copies you can cut out would be equal to 22.

In the third example the array tt can be cut out 55 times.

題解:優先佇列存一下,按sum/(num+1)排序,每次放進去的之前,與頂部元素比較,每次操作一次,寫的時候傻逼了,寫成了對於pop出的第一個數,分到不能分為止

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
const int N=2e5+100;
struct node{
	int id,sum,num;
	node(int id_,int sum_,int num_):id(id_),sum(sum_),num(num_){
	}
	bool operator < (const node &x)const
	{
		return sum/(num+1) < x.sum/(x.num+1);
	}
};
struct node1{
	int id;
	int sum;
}a[N];
bool cmp(node1 x,node1 y)
{
	return x.sum>y.sum;
}
int n,k,len,b[N];
map<int,int> mp;
int main()
{
	priority_queue<node> q;
	int ans=0;
	int x;
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++)
	{
		scanf("%d",&x);
		mp[x]++;
	}
	for(int i=1;i<=2e5;i++)
	{
		if(mp[i]==0) continue;
		a[len].id=i;
		a[len++].sum=mp[i];
	}
	sort(a,a+len,cmp);
	q.push(node(a[0].id,a[0].sum,1));
	ans++;
	for(int i=1;i<len;i++)
	{
		if(ans>=k) break;
		node tmp=q.top();
		while((double)tmp.sum/(tmp.num+1)>=a[i].sum)
		{
			q.pop();
			tmp.num++;
			q.push(tmp);
			ans++;
			if(ans==k) break;
			tmp=q.top();
		}
		if(ans==k) break;
		q.push(node(a[i].id,a[i].sum,1));
		ans++;
	}
	while(ans<k)
	{
		node tmp=q.top();q.pop();
		tmp.num++;
		q.push(tmp);
		ans++;
	}
	int cnt=0;
	while(!q.empty())
	{
		node tmp=q.top();
		q.pop();
		for(int i=0;i<tmp.num;i++)
			printf("%d%c",tmp.id," \n"[++cnt==k]);
	}
	return 0;
}