1. 程式人生 > >算法訓練(三)

算法訓練(三)

公式 mes 相加 求和 namespace 算法 出現 -- scan

1.zoj-4026

首先我們需要推倒一下,每次都是從A開始拿,可以列舉幾種情況,會發現最後結束一定是在第四次抽到A的時候結束的,因為假設在第二堆結束,你在抽完4次2後第二堆才為空,你需要第五次抽到2才會回到第二堆,這時候才能結束,不符合題意,因此只有第一次就被抽的A能結束遊戲,因此結束的時候一定為A,因此A被抽完的可能性為ans【1】=1;

假設每種牌剩余數量分別為n1,...,n12n1,...,n12,對於2≤i≤122≤i≤12,如果ni=0ni=0說明四張ii都被拿走了,即ans[i]=1ans[i]=1,否則說明還有ii沒有被拿走,此時若n1=0n1=0說明遊戲已經結束,那麽沒有機會再拿走剩下的ii了,即ans[i]=0ans[i]=0,否則說明還有機會拿走全部的ii,此時問題轉化為,m=48?nm=48?n張牌隨意排列,要求在拿走第n1張AA之前拿走ni張ii,枚舉最後一張A的位置j,用組合公式算出總方案數和滿足條件的方案數,代碼如下:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int, int>P;
const int INF = 0x3f3f3f3f, maxn = 15; int T, n, num[maxn]; ll C(int n, int m) { if (m<0 || m>n)return 0; ll ans = 1; for (int i = 1; i <= m; i++)ans = ans * (n - m + i) / i; return ans; } int V(char *s) { if (s[1])return 10; if (s[0] == A)return 1; if (s[0] == J)return
11; if (s[0] == Q)return 12; return s[0] - 0; } ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } int main() { scanf("%d", &T); while (T--) { scanf("%d", &n); for (int i = 1; i <= 12; i++)num[i] = 4; /*每張牌有4張*/ for (int i = 1; i <= n; i++) { char s[3]; scanf("%s", s); num[V(s)]--;/*每次被抽一次就減少一張*/ } n = 48 - n;/*剩下多少張牌沒有被抽*/ printf("1");/*A被抽完的可能性為1*/ for (int i = 2; i <= 12; i++) if (!num[i])printf(" 1");/*若已被抽完則為1*/ else if (!num[1])printf(" 0");/*若A已被抽完且第i張牌沒有被抽完就已沒機會被抽完*/ else { ll q = C(n, num[1])*C(n - num[1], num[i]);/*總的方案數*/ ll p = 0; for (int j = num[1] + num[i]; j <= n; j++)p += C(j - 1, num[1] - 1)*C(j - num[1], num[i]);/*滿足條件的方案數*/ ll g = gcd(p, q); p /= g, q /= g; if (p == 0)printf(" 0"); else if (p == q)printf(" 1"); printf(" %lld/%lld", p, q); } printf("\n"); } return 0; }



2.zoj-4027
假設現有n個括號,其中有兩個左括號A和B,則最後移動完後A一定在B的左邊,這是很關鍵的一點;

可知左括號與n個右括號交換,則得到的值是此左括號對應的值與被交換的右括號的值的總和;

dp數組的i行表示的是第i個左括號,因此這一行用來維護此左括號能得到的最大值,再與dp[i+1][j+1]相加,即可得到這兩個左括號能得到的最大值的總和,建議畫出dp圖理解,代碼如下:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
const int  maxn = 1005;
int T, n, nl, nr, val[maxn], num[maxn], sum[maxn], pos[maxn];
long long dp[maxn][maxn];
char s[maxn];

int main()
{
    scanf("%d", &T);
    while (T--)
    {
        memset(s, \0, sizeof(val));
        memset(val, 0, sizeof(val));
        memset(pos, 0, sizeof(pos));
        memset(num, 0, sizeof(num));
        memset(sum, 0, sizeof(sum));
        memset(dp, 0, sizeof(dp));
        scanf("%d", &n);
        scanf("%s", s + 1);
        for (int i = 1; i <= n; i++)
            scanf("%d", &val[i]);
        nl = nr = 0;/*nl用來記錄左括號的總數,nr用來記錄右括號的總數*/
        for (int i = 1; i <= n; i++)
            if (s[i] == ()
            {
                pos[++nl] = i;/*當出現左括號的時候,用pos數組來記錄此括號的位置*/
                num[nl] = nr;/*用num數組來記錄此括號的左邊的右括號的總數*/
            }
            else
            {
                nr++;
                sum[nr] = sum[nr - 1] + val[i];/*用sum數組記錄右括號的疊加和*/
            }
        for (int i = nl; i >= 1; i--)
        {
            for (int j = n - (nl - i); j >= pos[i]; j--)
            {
                long long temp = (long long)val[pos[i]] * (sum[num[i] + j - pos[i]] - sum[num[i]]);
                dp[i][j] = dp[i + 1][j + 1] + temp;
                if (j<n - (nl - i))dp[i][j] = max(dp[i][j], dp[i][j + 1]);
            }
            for (int j = pos[i] - 1; j >= pos[i - 1]; j--)
                dp[i][j] = dp[i][j + 1];
        }
        long long  ans = 0;
        for (int j = 1; j <= n; j++)
            ans = max(ans, dp[1][j]);
        printf("%lld\n", ans);
    }
    return 0;
}

3.zoj-4033

當 0<=i<n/2 時,將標記為0的男生分到3組,女生分到1組;

當 i >= n/2 時,將標記為1的男生分到3組,女生分到一組;

分別對1、3組和2、4組的權值求和,若不相等輸出-1,否則輸出位置。

#include <cstdio>
#include <algorithm>
#include <functional>
#include <cstring>
#include <iostream>
#include <cmath>
using namespace std;
const int maxn=1e6+10,inf=(1<<30),mod=1e9+7;
char que[maxn];
int place[maxn];
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        int n;
        scanf("%d",&n);
        scanf("%s",que);
        int sum1=0,sum2=0;
        for (int i=0;i<n/2;i++){
            if(i%2==0) place[i]=0,sum1+=i+1;
            else place[i]=1,sum2+=i+1;
        }
        for (int i=n/2;i<n;i++){
            if(i%2==0) place[i]=1,sum2+=i+1;
            else place[i]=0,sum1+=i+1;
        }
        if(sum1!=sum2){
            printf("-1\n");
            continue;
        }
        for (int i=0;i<n;i++){
            if(que[i]==1){
                if(place[i]) printf("4");
                else printf("3");
            }
            else {
                if(place[i]) printf("2");
                else printf("1");
            }
        }
        printf("\n");
    }
    return 0;
}

算法訓練(三)