spark job提交6
阿新 • • 發佈:2018-11-23
driver端呼叫launchTasks來向worker節點中的executor傳送啟動任務命令 spark-master\core\src\main\scala\org\apache\spark\scheduler\cluster\CoarseGrainedSchedulerBackend.scala private def launchTasks(tasks: Seq[Seq[TaskDescription]]) { #向executor傳送啟動任務命令 executorData.executorEndpoint.send(LaunchTask(new SerializableBuffer(serializedTask))) } ./core/src/main/scala/org/apache/spark/executor/CoarseGrainedExecutorBackend.scala override def receive: PartialFunction[Any, Unit] = { case RegisteredExecutor => logInfo("Successfully registered with driver") try { executor = new Executor(executorId, hostname, env, userClassPath, isLocal = false) } catch { case NonFatal(e) => exitExecutor(1, "Unable to create executor due to " + e.getMessage, e) } case LaunchTask(data) => #處理driver端傳送過來的LaunchTask命令。executor為null的話,直接退出 if (executor == null) { exitExecutor(1, "Received LaunchTask command but executor was null") } else { #拿到task的描述 val taskDesc = TaskDescription.decode(data.value) logInfo("Got assigned task " + taskDesc.taskId) #啟動任務的執行 executor.launchTask(this, taskDesc) } } def launchTask(context: ExecutorBackend, taskDescription: TaskDescription): Unit = { #建立新的TaskRunner,然後將tr降到執行緒池中執行 val tr = new TaskRunner(context, taskDescription) runningTasks.put(taskDescription.taskId, tr) threadPool.execute(tr) } override def run(): Unit = { try { // Run the actual task and measure its runtime. taskStartTime = System.currentTimeMillis() taskStartCpu = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L var threwException = true val value = try { #執行task的run方法 val res = task.run( taskAttemptId = taskId, attemptNumber = taskDescription.attemptNumber, metricsSystem = env.metricsSystem) threwException = false } } spark-master\core\src\main\scala\org\apache\spark\scheduler\Task.scala */ final def run( taskAttemptId: Long, attemptNumber: Int, metricsSystem: MetricsSystem): T = { SparkEnv.get.blockManager.registerTask(taskAttemptId) // TODO SPARK-24874 Allow create BarrierTaskContext based on partitions, instead of whether // the stage is barrier. TaskContext.setTaskContext(context) taskThread = Thread.currentThread() if (_reasonIfKilled != null) { kill(interruptThread = false, _reasonIfKilled) } try { #呼叫runtask方法執行,不同的任務其實現不同 runTask(context) } catch 這裡的task 分為兩類,一類是ResultTask,另一類是shufflemaptask spark-master\core\src\main\scala\org\apache\spark\scheduler\ResultTask.scala 這裡以ResultTask為例 override def runTask(context: TaskContext): U = { // Deserialize the RDD and the func using the broadcast variables. val threadMXBean = ManagementFactory.getThreadMXBean val deserializeStartTime = System.currentTimeMillis() val deserializeStartCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime } else 0L val ser = SparkEnv.get.closureSerializer.newInstance() #反序列化 val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) _executorDeserializeTime = System.currentTimeMillis() - deserializeStartTime _executorDeserializeCpuTime = if (threadMXBean.isCurrentThreadCpuTimeSupported) { threadMXBean.getCurrentThreadCpuTime - deserializeStartCpuTime } else 0L #執行rdd.iterator完成計算任務 func(context, rdd.iterator(partition, context)) } 再來看看shufflemaptask spark-master\core\src\main\scala\org\apache\spark\scheduler\ShuffleMapTask.scala override def runTask(context: TaskContext): MapStatus = { // Deserialize the RDD using the broadcast variable. val threadMXBean = ManagementFactory.getThreadMXBean #反序列化rdd val ser = SparkEnv.get.closureSerializer.newInstance() val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])]( ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader) var writer: ShuffleWriter[Any, Any] = null try { #根據shuffleManager得到writer,然後將rdd寫入 val manager = SparkEnv.get.shuffleManager writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context) writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]]) writer.stop(success = true).get } catch }