Data Lake Analytics + OSS資料檔案格式處理大全
0. 前言
Data Lake Analytics是Serverless化的雲上互動式查詢分析服務。使用者可以使用標準的SQL語句,對儲存在OSS、TableStore上的資料無需移動,直接進行查詢分析。
目前該產品已經正式登陸阿里雲,歡迎大家申請試用,體驗更便捷的資料分析服務。
在上一篇教程中,我們介紹瞭如何分析CSV格式的TPC-H資料集。除了純文字檔案(例如,CSV,TSV等),使用者儲存在OSS上的其他格式的資料檔案,也可以使用Data Lake Analytics進行查詢分析,包括ORC, PARQUET, JSON, RCFILE, AVRO甚至ESRI規範的地理JSON資料,還可以用正則表示式匹配的檔案等。
本文詳細介紹如何根據儲存在OSS上的檔案格式使用Data Lake Analytics (下文簡稱 DLA)進行分析。DLA內建了各種處理檔案資料的SerDe(Serialize/Deserilize的簡稱,目的是用於序列化和反序列化)實現,使用者無需自己編寫程式,基本上能選用DLA中的一款或多款SerDe來匹配您OSS上的資料檔案格式。如果還不能滿足您特殊檔案格式的處理需求,請聯絡我們,儘快為您實現。
1. 儲存格式與SerDe
使用者可以依據儲存在OSS上的資料檔案進行建表,通過STORED AS 指定資料檔案的格式。
例如,
CREATE EXTERNAL TABLE nation (
N_NATIONKEY INT,
N_NAME STRING, N_REGIONKEY INT, N_COMMENT STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 'oss://test-bucket-julian-1/tpch_100m/nation';
建表成功後可以使用SHOW CREATE TABLE語句檢視原始建表語句。
mysql> show create table nation;
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| Result |
+-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ | CREATE EXTERNAL TABLE `nation`( `n_nationkey` int, `n_name` string, `n_regionkey` int, `n_comment` string) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS `TEXTFILE` LOCATION 'oss://test-bucket-julian-1/tpch_100m/nation'| +-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+ 1 row in set (1.81 sec)
下表中列出了目前DLA已經支援的檔案格式,當針對下列格式的檔案建表時,可以直接使用STORED AS,DLA會選擇合適的SERDE/INPUTFORMAT/OUTPUTFORMAT。
儲存格式 | 描述 |
STORED AS TEXTFILE | 資料檔案的儲存格式為純文字檔案。預設的檔案型別。 檔案中的每一行對應表中的一條記錄。 |
STORED AS ORC | 資料檔案的儲存格式為ORC。 |
STORED AS PARQUET | 資料檔案的儲存格式為PARQUET。 |
STORED AS RCFILE | 資料檔案的儲存格式為RCFILE。 |
STORED AS AVRO | 資料檔案的儲存格式為AVRO。 |
STORED AS JSON | 資料檔案的儲存格式為JSON (Esri ArcGIS的地理JSON資料檔案除外)。 |
在指定了STORED AS 的同時,還可以根據具體檔案的特點,指定SerDe (用於解析資料檔案並對映到DLA表),特殊的列分隔符等。
後面的部分會做進一步的講解。
2. 示例
2.1 CSV檔案
CSV檔案,本質上還是純文字檔案,可以使用STORED AS TEXTFILE。
列與列之間以逗號分隔,可以通過ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' 表示。
普通CSV檔案
例如,資料檔案oss://bucket-for-testing/oss/text/cities/city.csv的內容為
Beijing,China,010
ShangHai,China,021
Tianjin,China,022
建表語句可以為
CREATE EXTERNAL TABLE city (
city STRING,
country STRING, code INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE LOCATION 'oss://bucket-for-testing/oss/text/cities';
使用OpenCSVSerde__處理引號__引用的欄位
OpenCSVSerde在使用時需要注意以下幾點:
- 使用者可以為行的欄位指定欄位分隔符、欄位內容引用符號和轉義字元,例如:WITH SERDEPROPERTIES ("separatorChar" = ",", "quoteChar" = "`", "escapeChar" = "\" );
- 不支援欄位內嵌入的行分割符;
- 所有欄位定義STRING型別;
- 其他資料型別的處理,可以在SQL中使用函式進行轉換。
例如,
CREATE EXTERNAL TABLE test_csv_opencsvserde (
id STRING, name STRING, location STRING, create_date STRING, create_timestamp STRING, longitude STRING, latitude STRING ) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.OpenCSVSerde' with serdeproperties( "separatorChar"=",", "quoteChar"="\"", "escapeChar"="\\" ) STORED AS TEXTFILE LOCATION 'oss://test-bucket-julian-1/test_csv_serde_1';
自定義分隔符
需要自定義列分隔符(FIELDS TERMINATED BY),轉義字元(ESCAPED BY),行結束符(LINES TERMINATED BY)。
需要在建表語句中指定
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '\t'
ESCAPED BY '\\'
LINES TERMINATED BY '\n'
忽略CSV檔案中的HEADER
在csv檔案中,有時會帶有HEADER資訊,需要在資料讀取時忽略掉這些內容。這時需要在建表語句中定義skip.header.line.count。
例如,資料檔案oss://my-bucket/datasets/tpch/nation_csv/nation_header.tbl的內容如下:
N_NATIONKEY|N_NAME|N_REGIONKEY|N_COMMENT
0|ALGERIA|0| haggle. carefully final deposits detect slyly agai|
1|ARGENTINA|1|al foxes promise slyly according to the regular accounts. bold requests alon| 2|BRAZIL|1|y alongside of the pending deposits. carefully special packages are about the ironic forges. slyly special | 3|CANADA|1|eas hang ironic, silent packages. slyly regular packages are furiously over the tithes. fluffily bold| 4|EGYPT|4|y above the carefully unusual theodolites. final dugouts are quickly across the furiously regular d| 5|ETHIOPIA|0|ven packages wake quickly. regu|
相應的建表語句為:
CREATE EXTERNAL TABLE nation_header (
N_NATIONKEY INT,
N_NAME STRING, N_REGIONKEY INT, N_COMMENT STRING ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '|' STORED AS TEXTFILE LOCATION 'oss://my-bucket/datasets/tpch/nation_csv/nation_header.tbl' TBLPROPERTIES ("skip.header.line.count"="1");
skip.header.line.count的取值x和資料檔案的實際行數n有如下關係:
- 當x<=0時,DLA在讀取檔案時,不會過濾掉任何資訊,即全部讀取;
- 當0
- 當x>=n時,DLA在讀取檔案時,會過濾掉所有的檔案內容。
2.2 TSV檔案
與CSV檔案類似,TSV格式的檔案也是純文字檔案,列與列之間的分隔符為Tab。
例如,資料檔案oss://bucket-for-testing/oss/text/cities/city.tsv的內容為
Beijing China 010
ShangHai China 021
Tianjin China 022
建表語句可以為
CREATE EXTERNAL TABLE city (
city STRING,
country STRING, code INT ) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS TEXTFILE LOCATION 'oss://bucket-for-testing/oss/text/cities';
2.3 多字元資料欄位分割符檔案
假設您的資料欄位的分隔符包含多個字元,可採用如下示例建表語句,其中每行的資料欄位分割符為“||”,可以替換為您具體的分割符字串。
ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.MultiDelimitSerDe'
with serdeproperties(
"field.delim"="||"
)
示例:
CREATE EXTERNAL TABLE test_csv_multidelimit (
id STRING, name STRING, location STRING, create_date STRING, create_timestamp STRING, longitude STRING, latitude STRING ) ROW FORMAT SERDE 'org.apache.hadoop.hive.contrib.serde2.MultiDelimitSerDe' with serdeproperties( "field.delim"="||" ) STORED AS TEXTFILE LOCATION 'oss://bucket-for-testing/oss/text/cities/';
2.4 JSON檔案
DLA可以處理的JSON檔案通常以純文字的格式儲存,在建表時除了要指定STORED AS TEXTFILE, 還要定義SERDE。
在JSON檔案中,每行必須是一個完整的JSON物件。
例如,下面的檔案格式是不被接受的
{"id": 123, "name": "jack",
"c3": "2001-02-03 12:34:56"} {"id": 456, "name": "rose", "c3": "1906-04-18 05:12:00"} {"id": 789, "name": "tom", "c3": "2001-02-03 12:34:56"} {"id": 234, "name": "alice", "c3": "1906-04-18 05:12:00"}
需要改寫成:
{"id": 123, "name": "jack", "c3": "2001-02-03 12:34:56"} {"id": 456, "name": "rose", "c3": "1906-04-18 05:12:00"} {"id": 789, "name": "tom", "c3": "2001-02-03 12:34:56"} {"id": 234, "name": "alice", "c3": "1906-04-18 05:12:00"}
不含巢狀的JSON資料
建表語句可以寫
CREATE EXTERNAL TABLE t1 (id int, name string, c3 timestamp) STORED AS JSON LOCATION 'oss://path/to/t1/directory';
含有巢狀的JSON檔案
使用struct和array結構定義巢狀的JSON資料。
例如,使用者原始資料(注意:無論是否巢狀,一條完整的JSON資料都只能放在一行上,才能被Data Lake Analytics處理):
{ "DocId": "Alibaba", "User_1": { "Id": 1234, "Username": "bob1234", "Name": "Bob", "ShippingAddress": { "Address1": "969 Wenyi West St.", "Address2": null, "City": "Hangzhou", "Province": "Zhejiang" }, "Orders": [{ "ItemId": 6789, "OrderDate": "11/11/2017" }, { "ItemId": 4352, "OrderDate": "12/12/2017" } ] } }
使用線上JSON格式化工具格式化後,資料內容如下:
{
"DocId": "Alibaba",
"User_1": {
"Id": 1234, "Username": "bob1234", "Name": "Bob", "ShippingAddress": { "Address1": "969 Wenyi West St.", "Address2": null, "City": "Hangzhou", "Province": "Zhejiang" }, "Orders": [ { "ItemId": 6789, "OrderDate": "11/11/2017" }, { "ItemId": 4352, "OrderDate": "12/12/2017" } ] } }
則建表語句可以寫成如下(注意:LOCATION中指定的路徑必須是JSON資料檔案所在的目錄,該目錄下的所有JSON檔案都能被識別為該表的資料):
CREATE EXTERNAL TABLE json_table_1 (
docid string,
user_1 struct< id:INT, username:string, name:string, shippingaddress:struct< address1:string, address2:string, city:string, province:string >, orders:array< struct< itemid:INT, orderdate:string > > > ) STORED AS JSON LOCATION 'oss://xxx/test/json/hcatalog_serde/table_1/';
對該表進行查詢:
select * from json_table_1;
+---------+----------------------------------------------------------------------------------------------------------------+
| docid | user_1 |
+---------+----------------------------------------------------------------------------------------------------------------+
| Alibaba | [1234, bob1234, Bob, [969 Wenyi West St., null, Hangzhou, Zhejiang], [[6789, 11/11/2017], [4352, 12/12/2017]]] |
+---------+----------------------------------------------------------------------------------------------------------------+
對於struct定義的巢狀結構,可以通過“.”進行層次物件引用,對於array定義的陣列結構,可以通過“[陣列下標]”(注意:陣列下標從1開始)進行物件引用。
select DocId,
User_1.Id,
User_1.ShippingAddress.Address1,
User_1.Orders[1].ItemId
from json_table_1
where User_1.Username = 'bob1234' and User_1.Orders[2].OrderDate = '12/12/2017'; +---------+------+--------------------+-------+ | DocId | id | address1 | _col3 | +---------+------+--------------------+-------+ | Alibaba | 1234 | 969 Wenyi West St. | 6789 | +---------+------+--------------------+-------+
使用JSON函式處理資料
例如,把“value_string”的巢狀JSON值作為字串儲存:
{"data_key":"com.taobao.vipserver.domains.meta.biz.alibaba.com","ts":1524550275112,"value_string":"{\"appName\":\"\",\"apps\":[],\"checksum\":\"50fa0540b430904ee78dff07c7350e1c\",\"clusterMap\":{\"DEFAULT\":{\"defCkport\":80,\"defIPPort\":80,\"healthCheckTask\":null,\"healthChecker\":{\"checkCode\":200,\"curlHost\":\"\",\"curlPath\":\"/status.taobao\",\"type\":\"HTTP\"},\"name\":\"DEFAULT\",\"nodegroup\":\"\",\"sitegroup\":\"\",\"submask\":\"0.0.0.0/0\",\"syncConfig\":{\"appName\":\"trade-ma\",\"nodegroup\":\"tradema\",\"pubLevel\":\"publish\",\"role\":\"\",\"site\":\"\"},\"useIPPort4Check\":true}},\"disabledSites\":[],\"enableArmoryUnit\":false,\"enableClientBeat\":false,\"enableHealthCheck\":true,\"enabled\":true,\"envAndSites\":\"\",\"invalidThreshold\":0.6,\"ipDeleteTimeout\":1800000,\"lastModifiedMillis\":1524550275107,\"localSiteCall\":true,\"localSiteThreshold\":0.8,\"name\":\"biz.alibaba.com\",\"nodegroup\":\"\",\"owners\":[\"junlan.zx\",\"張三\",\"李四\",\"cui.yuanc\"],\"protectThreshold\":0,\"requireSameEnv\":false,\"resetWeight\":false,\"symmetricCallType\":null,\"symmetricType\":\"warehouse\",\"tagName\":\"ipGroup\",\"tenantId\":\"\",\"tenants\":[],\"token\":\"1cf0ec0c771321bb4177182757a67fb0\",\"useSpecifiedURL\":false}"}
使用線上JSON格式化工具格式化後,資料內容如下:
{
"data_key": "com.taobao.vipserver.domains.meta.biz.alibaba.com",
"ts": 1524550275112,
"value_string": "{\"appName\":\"\",\"apps\":[],\"checksum\":\"50fa0540b430904ee78dff07c7350e1c\",\"clusterMap\":{\"DEFAULT\":{\"defCkport\":80,\"defIPPort\":80,\"healthCheckTask\":null,\"healthChecker\":{\"checkCode\":200,\"curlHost\":\"\",\"curlPath\":\"/status.taobao\",\"type\":\"HTTP\"},\"name\":\"DEFAULT\",\"nodegroup\":\"\",\"sitegroup\":\"\",\"submask\":\"0.0.0.0/0\",\"syncConfig\":{\"appName\":\"trade-ma\",\"nodegroup\":\"tradema\",\"pubLevel\":\"publish\",\"role\":\"\",\"site\":\"\"},\"useIPPort4Check\":true}},\"disabledSites\":[],\"enableArmoryUnit\":false,\"enableClientBeat\":false,\"enableHealthCheck\":true,\"enabled\":true,\"envAndSites\":\"\",\"invalidThreshold\":0.6,\"ipDeleteTimeout\":1800000,\"lastModifiedMillis\":1524550275107,\"localSiteCall\":true,\"localSiteThreshold\":0.8,\"name\":\"biz.alibaba.com\",\"nodegroup\":\"\",\"owners\":[\"junlan.zx\",\"張三\",\"李四\",\"cui.yuanc\"],\"protectThreshold\":0,\"requireSameEnv\":false,\"resetWeight\":false,\"symmetricCallType\":null,\"symmetricType\":\"warehouse\",\"tagName\":\"ipGroup\",\"tenantId\":\"\",\"tenants\":[],\"token\":\"1cf0ec0c771321bb4177182757a67fb0\",\"useSpecifiedURL\":false}" }
建表語句為
CREATE external TABLE json_table_2 (
data_key string,
ts bigint, value_string string ) STORED AS JSON LOCATION 'oss://xxx/test/json/hcatalog_serde/table_2/';
表建好後,可進行查詢:
select * from json_table_2;
+---------------------------------------------------+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| data_key | ts | value_string |
+---------------------------------------------------+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| com.taobao.vipserver.domains.meta.biz.alibaba.com | 1524550275112 | {"appName":"","apps":[],"checksum":"50fa0540b430904ee78dff07c7350e1c","clusterMap":{"DEFAULT":{"defCkport":80,"defIPPort":80,"healthCheckTask":null,"healthChecker":{"checkCode":200,"curlHost":"","curlPath":"/status.taobao","type":"HTTP"},"name":"DEFAULT","nodegroup":"","sitegroup":"","submask":"0.0.0.0/0","syncConfig":{"appName":"trade-ma","nodegroup":"tradema","pubLevel":"publish","role":"","site":""},"useIPPort4Check":true}},"disabledSites":[],"enableArmoryUnit":false,"enableClientBeat":false,"enableHealthCheck":true,"enabled":true,"envAndSites":"","invalidThreshold":0.6,"ipDeleteTimeout":1800000,"lastModifiedMillis":1524550275107,"localSiteCall":true,"localSiteThreshold":0.8,"name":"biz.alibaba.com","nodegroup":"","owners":["junlan.zx","張三","李四","cui.yuanc"],"protectThreshold":0,"requireSameEnv":false,"resetWeight":false,"symmetricCallType":null,"symmetricType":"warehouse","tagName":"ipGroup","tenantId":"","tenants":[],"token":"1cf0ec0c771321bb4177182757a67fb0","useSpecifiedURL":false} | +---------------------------------------------------+---------------+------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
下面SQL示例json_parse,json_extract_scalar,json_extract等常用JSON函式的使用方式:
mysql> select json_extract_scalar(json_parse(value), '$.owners[1]') from json_table_2;
+--------+ | _col0 | +--------+ | 張三 | +--------+ mysql> select json_extract_scalar(json_obj.json_col, '$.DEFAULT.submask') from ( select json_extract(json_parse(value), '$.clusterMap') as json_col from json_table_2 ) json_obj where json_extract_scalar(json_obj.json_col, '$.DEFAULT.healthChecker.curlPath') = '/status.taobao'; +-----------+ | _col0 | +-----------+ | 0.0.0.0/0 | +-----------+ mysql> with json_obj as (select json_extract(json_parse(value), '$.clusterMap') as json_col from json_table_2) select json_extract_scalar(json_obj.json_col, '$.DEFAULT.submask') from json_obj where json_extract_scalar(json_obj.json_col, '$.DEFAULT.healthChecker.curlPath') = '/status.taobao'; +-----------+ | _col0 | +-----------+ | 0.0.0.0/0 | +-----------+
2.5 ORC檔案
Optimized Row Columnar(ORC)是Apache開源專案Hive支援的一種優化的列儲存檔案格式。與CSV檔案相比,不僅可以節省儲存空間,還可以得到更好的查詢效能。
對於ORC檔案,只需要在建表時指定 STORED AS ORC。
例如,
CREATE EXTERNAL TABLE orders_orc_date (
O_ORDERKEY INT,
O_CUSTKEY INT, O_ORDERSTATUS STRING, O_TOTALPRICE DOUBLE, O_ORDERDATE DATE, O_ORDERPRIORITY STRING, O_CLERK STRING, O_SHIPPRIORITY INT, O_COMMENT STRING ) STORED AS ORC LOCATION 'oss://bucket-for-testing/datasets/tpch/1x/orc_date/orders_orc';
2.6 PARQUET檔案
Parquet是Apache開源專案Hadoop支援的一種列儲存的檔案格式。
使用DLA建表時,需要指定STORED AS PARQUET即可。
例如,
CREATE EXTERNAL TABLE orders_parquet_date (
O_ORDERKEY INT,
O_CUSTKEY INT, O_ORDERSTATUS STRING, O_TOTALPRICE DOUBLE, O_ORDERDATE DATE, O_ORDERPRIORITY STRING, O_CLERK STRING, O_SHIPPRIORITY INT, O_COMMENT STRING ) STORED AS PARQUET LOCATION 'oss://bucket-for-testing/datasets/tpch/1x/parquet_date/orders_parquet';
2.7 RCFILE檔案
Record Columnar File (RCFile), 列儲存檔案,可以有效地將關係型表結構儲存在分散式系統中,並且可以被高效地讀取和處理。
DLA在建表時,需要指定STORED AS RCFILE。
例如,
CREATE EXTERNAL TABLE lineitem_rcfile_date (
L_ORDERKEY INT,
L_PARTKEY INT, L_SUPPKEY INT, L_LINENUMBER INT, L_QUANTITY DOUBLE, L_EXTENDEDPRICE DOUBLE, L_DISCOUNT DOUBLE, L_TAX DOUBLE, L_RETURNFLAG STRING, L_LINESTATUS STRING, L_SHIPDATE DATE, L_COMMITDATE DATE, L_RECEIPTDATE DATE, L_SHIPINSTRUCT STRING, L_SHIPMODE STRING, L_COMMENT STRING ) STORED AS RCFILE LOCATION 'oss://bucke-for-testing/datasets/tpch/1x/rcfile_date/lineitem_rcfile'
2.8 AVRO檔案
DLA針對AVRO檔案建表時,需要指定STORED AS AVRO,並且定義的欄位需要符合AVRO檔案的schema。
如果不確定可以通過使用Avro提供的工具,獲得schema,並根據schema建表。
在Apache Avro官網下載avro-tools-.jar到本地,執行下面的命令獲得Avro檔案的schema:
java -jar avro-tools-1.8.2.jar getschema /path/to/your/doctors.avro
{
"type" : "record",
"name" : "doctors",
"namespace" : "testing.hive.avro.serde", "fields" : [ { "name" : "number", "type" : "int", "doc" : "Order of playing the role" }, { "name" : "first_name", "type" : "string", "doc" : "first name of actor playing role" }, { "name" : "last_name", "type" : "string", "doc" : "last name of actor playing role" } ] }
建表語句如下,其中fields中的name對應表中的列名,type需要參考本文件中的表格轉成hive支援的型別
CREATE EXTERNAL TABLE doctors(
number int, first_name string, last_name string) STORED AS AVRO LOCATION 'oss://mybucket-for-testing/directory/to/doctors';
大多數情況下,Avro的型別可以直接轉換成Hive中對應的型別。如果該型別在Hive不支援,則會轉換成接近的型別。具體請參照下表:
Avro型別 | 對應Hive型別 |
---|---|
null | void |
boolean | boolean |
int | int |
long | bigint |
float | float |
double | double |
bytes | binary |
string | string |
record | struct |
map | map |
list | array |
union | union |
enum | string |
fixed | binary |
2.9 可以用正則表示式匹配的檔案
通常此型別的檔案是以純文字格式儲存在OSS上的,每一行代表表中的一條記錄,並且每行可以用正則表示式匹配。
例如,Apache WebServer日誌檔案就是這種型別的檔案。
某日誌檔案的內容為:
127.0.0.1 - frank [10/Oct/2000:13:55:36 -0700] "GET /apache_pb.gif HTTP/1.0" 200 2326
127.0.0.1 - - [26/May/2009:00:00:00 +0000] "GET /someurl/?track=Blabla(Main) HTTP/1.1" 200 5864 - "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/525.19 (KHTML, like Gecko) Chrome/1.0.154.65 Safari/525.19"
每行檔案可以用下面的正則表示式表示,列之間使用空格分隔:
([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \"]*|\"[^\"]*\"))?
針對上面的檔案格式,建表語句可以表示為:
CREATE EXTERNAL TABLE serde_regex(
host STRING,
identity STRING, userName STRING, time STRING, request STRING, status STRING, size INT, referer STRING, agent STRING) ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe' WITH SERDEPROPERTIES ( "input.regex" = "([^ ]*) ([^ ]*) ([^ ]*) (-|\\[[^\\]]*\\]) ([^ \"]*|\"[^\"]*\") (-|[0-9]*) (-|[0-9]*)(?: ([^ \"]*|\"[^\"]*\") ([^ \"]*|\"[^\"]*\"))?" ) STORED AS TEXTFILE LOCATION 'oss://bucket-for-testing/datasets/serde/regex';
查詢結果
mysql> select * from serde_regex;
+-----------+----------+-------+------------------------------+---------------------------------------------+--------+------+---------+--------------------------------------------------------------------------------------------------------------------------+
| host | identity | userName | time | request | status | size | referer | agent |
+-----------+----------+-------+------------------------------+---------------------------------------------+--------+------+---------+--------------------------------------------------------------------------------------------------------------------------+
| 127.0.0.1 | - | frank | [10/Oct/2000:13:55:36 -0700] | "GET /apache_pb.gif HTTP/1.0" | 200 | 2326 | NULL | NULL |
| 127.0.0.1 | - | - | [26/May/2009:00:00:00 +0000] | "GET /someurl/?track=Blabla(Main) HTTP/1.1" | 200 | 5864 | - | "Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US) AppleWebKit/525.19 (KHTML, like Gecko) Chrome/1.0.154.65 Safari/525.19" |
+-----------+----------+-------+------------------------------+---------------------------------------------+--------+------+---------+--------------------------------------------------------------------------------------------------------------------------+
2.10 Esri ArcGIS的地理JSON資料檔案
DLA支援Esri ArcGIS的地理JSON資料檔案的SerDe處理。
示例:
CREATE EXTERNAL TABLE IF NOT EXISTS california_counties ( Name string, BoundaryShape binary ) ROW FORMAT SERDE 'com.esri.hadoop.hive.serde.JsonSerde' STORED AS INPUTFORMAT 'com.esri.json.hadoop.EnclosedJsonInputFormat' OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat' LOCATION 'oss://test_bucket/datasets/geospatial/california-counties/'
3. 總結
通過以上例子可以看出,DLA可以支援大部分開源儲存格式的檔案。對於同一份資料,使用不同的儲存格式,在OSS中儲存檔案的大小,DLA的查詢分析速度上會有較大的差別。推薦使用ORC格式進行檔案的儲存和查詢。
為了獲得更快的查詢速度,DLA還在不斷的優化中,後續也會支援更多的資料來源,為使用者帶來更好的大資料分析體驗。
原文連結
本文為雲棲社群原創內容,未經允許不得轉載。