1. 程式人生 > >LBP特徵向量提取思路

LBP特徵向量提取思路

LBP(Local Binary Pattern,區域性二值模式)是一種用來描述影象區域性紋理特徵的運算元;它具有旋轉不變性和灰度不變性等顯著的優點。它是首先由T. Ojala, M.Pietikäinen,和 D. Harwood 在1994年提出,用於紋理特徵提取。而且,提取的特徵是影象的區域性的紋理特徵;

對LBP特徵向量進行提取的步驟
(1)首先將檢測視窗劃分為a×a的小區域(cell);
(2)對於每個cell中的一個畫素,將相鄰的8個畫素的灰度值與其進行比較,若周圍畫素值大於中心畫素值,則該畫素點的位置被標記為1,否則為0。這樣,3*3鄰域內的8個點經比較可產生8位二進位制數,即得到該視窗中心畫素點的LBP值;
(3)然後計算每個cell的直方圖,即每個數字(假定是十進位制數LBP值)出現的頻率;然後對該直方圖進行歸一化處理。
(4)最後將得到的每個cell的統計直方圖進行連線成為一個特徵向量,也就是整幅圖的LBP紋理特徵向量;
然後便可利用SVM或者其他機器學習演算法進行分類了。

在LBP的應用中,如紋理分類、人臉分析等,一般都不將LBP圖譜作為特徵向量用於分類識別,而是採用LBP特徵譜的統計直方圖作為特徵向量用於分類識別。