1. 程式人生 > >POJ3422 Kaka's Matrix Travels

POJ3422 Kaka's Matrix Travels

嘟嘟嘟


費用流經典題。
大體的建圖大家應該都會,就是每一個點向他的下面和右面點連邊。但是沒有解決把點權轉化為邊權的問題。
但是這麼建圖的話不能確定這個點的權應該給那一條邊,因此有一個很經典同時也非常使實用的方法:拆點!這樣的話點權就是\(v -> v'\)的邊權了。
對於題中的要求,簡單來說就是隻有第一次經過這條邊能加分,因此\(v -> v'\)之間連兩條邊,分別是一條容量為\(1\),費用為\(a_{i, j}\)的邊和一條容量為\(INF\),費用為\(0\)的邊。
然後其餘的邊都是容量為\(INF\),費用為\(0\)的邊。
然後我們要跑的是最大費用最大流。把\(spfa\)

中的增廣條件的小於號改成大於號即可。

#include<cstdio>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<cctype>
#include<vector>
#include<stack>
#include<queue>
using namespace std;
#define enter puts("") 
#define space putchar(' ')
#define Mem(a, x) memset(a, x, sizeof(a))
#define rg register
typedef long long ll;
typedef double db;
const int INF = 0x3f3f3f3f;
const db eps = 1e-8;
const int maxn = 5e3 + 5;
const int maxe = 2e4 + 5;
inline ll read()
{
  ll ans = 0;
  char ch = getchar(), last = ' ';
  while(!isdigit(ch)) last = ch, ch = getchar();
  while(isdigit(ch)) ans = (ans << 1) + (ans << 3) + ch - '0', ch = getchar();
  if(last == '-') ans = -ans;
  return ans;
}
inline void write(ll x)
{
  if(x < 0) x = -x, putchar('-');
  if(x >= 10) write(x / 10);
  putchar(x % 10 + '0');
}

int n, k, s, t, a[55][55], sum = 0;

struct Edge
{
  int nxt, from, to, cap, c;
}e[maxe];
int head[maxn], ecnt = -1;
void addEdge(int x, int y, int w, int c)
{
  e[++ecnt] = (Edge){head[x], x, y, w, c};
  head[x] = ecnt;
  e[++ecnt] = (Edge){head[y], y, x, 0, -c};
  head[y] = ecnt;
}

bool in[maxn];
int dis[maxn], pre[maxn], flow[maxn];
bool spfa()
{
  Mem(dis, -1); Mem(in, 0);
  queue<int> q; q.push(s);
  in[s] = 1; dis[s] = 0; flow[s] = INF;
  while(!q.empty())
    {
      int now = q.front(); q.pop(); in[now] = 0;
      for(int i = head[now], v; i != -1; i = e[i].nxt)
    {
      v = e[i].to;
      if(e[i].cap && dis[now] + e[i].c > dis[v])
        {
          dis[v] = dis[now] + e[i].c;
          pre[v] = i;
          flow[v] = min(flow[now], e[i].cap);
          if(!in[v]) in[v] = 1, q.push(v);
        }
    }
    }
  return dis[t] != -1;
}
int maxCost = 0;
void update()
{
  int x = t;
  while(x != s)
    {
      int i = pre[x];
      e[i].cap -= flow[t];
      e[i ^ 1].cap += flow[t];
      x = e[i].from;
    }
  maxCost += flow[t] * dis[t];
}
void MCMF()
{
  while(spfa()) update();
}

int num(int x, int y)
{
  return (x - 1) * n + y;
}

int main()
{
  Mem(head, -1);
  n = read(); k = read(); s = 0; t = ((n * n) << 1) + 1;
  for(int i = 1; i <= n; ++i)
    for(int j = 1; j <= n; ++j) a[i][j] = read();
  addEdge(s, 1, k, 0); addEdge(t - 1, t, k, 0);
  for(int i = 1; i <= n; ++i)
    for(int j = 1; j <= n; ++j)
      {
    int u = num(i, j), v = num(i, j) + n * n;
    addEdge(u, v, 1, a[i][j]); addEdge(u, v, INF, 0);
    if(i + 1 <= n) addEdge(v, num(i + 1, j), INF, 0);
    if(j + 1 <= n) addEdge(v, num(i, j + 1), INF, 0);
      }
  MCMF();
  write(maxCost), enter;
  return 0;
}