1. 程式人生 > >Kth Largest Element in a Stream

Kth Largest Element in a Stream

Design a class to find the kth largest element in a stream. Note that it is the kth largest element in the sorted order, not the kth distinct element.

Your KthLargest class will have a constructor which accepts an integer k and an integer array nums, which contains initial elements from the stream. For each call to the method KthLargest.add

, return the element representing the kth largest element in the stream.

Example:

int k = 3;
int[] arr = [4,5,8,2];
KthLargest kthLargest = new KthLargest(3, arr);
kthLargest.add(3);   // returns 4
kthLargest.add(5);   // returns 5
kthLargest.add(10);  // returns 5
kthLargest.add(9);   // returns 8
kthLargest.add(4);   // returns 8

Note: 
You may assume that nums' length ≥ k-1 and k ≥ 1.

 

Approach #1: C++.[priority_queue]

class KthLargest {
public:
    KthLargest(int k, vector<int> nums) {
        size = k;
        for (int i = 0; i < nums.size(); ++i) {
            pq.push(nums[i]);
            if (pq.size() > k) pq.pop();
        }
    }
    
    int add(int val) {
        pq.push(val);
        if (pq.size() > size) pq.pop();
        return pq.top();
    }
    
private:
    priority_queue<int, vector<int>, greater<int>> pq;
    int size;
};

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

  

Approach #2: Java.[BST]

class KthLargest {
    TreeNode root;
    int k;

    public KthLargest(int k, int[] nums) {
        this.k = k;
        for (int num : nums) root = add(root, num);
    }
    
    public int add(int val) {
        root = add(root, val);
        return findKthLargest();
    }
    
    private TreeNode add(TreeNode root, int val) {
        if (root == null) return new TreeNode(val);
        root.count++;
        if (val < root.val) root.left = add(root.left, val);
        else root.right = add(root.right, val);
        return root;
    }
    
    public int findKthLargest() {
        int count = k;
        TreeNode walker = root;
        
        while (count > 0) {
            int pos = 1 + (walker.right != null ? walker.right.count : 0);
            if (count == pos) break;
            if (count > pos) {
                count -= pos;
                walker = walker.left;
            } else if (count < pos) 
                walker = walker.right;
        }
        return walker.val;
    }
    
    class TreeNode {
        int val, count = 1;
        TreeNode left, right;
        TreeNode(int v) { val = v; }
    }
}

/**
 * Your KthLargest object will be instantiated and called as such:
 * KthLargest obj = new KthLargest(k, nums);
 * int param_1 = obj.add(val);
 */

  

Approach #3: Python.[priority_queue].

class KthLargest(object):

    def __init__(self, k, nums):
        """
        :type k: int
        :type nums: List[int]
        """
        self.pool = nums
        self.k = k
        heapq.heapify(self.pool)
        while len(self.pool) > k:
            heapq.heappop(self.pool)
        

    def add(self, val):
        """
        :type val: int
        :rtype: int
        """
        if len(self.pool) < self.k:
            heapq.heapq.push(self.pool, val)
        elif val > self.pool[0]:
            heapq.heapreplace(self.pool, val)
        return self.pool[0]
        


# Your KthLargest object will be instantiated and called as such:
# obj = KthLargest(k, nums)
# param_1 = obj.add(val)