MyBatis 本地快取和二級快取使用以及原始碼分析 第二篇
本篇分析快取的查詢流程
1.二級快取的全域性配置
配置中的設定配置cacheEnabled標籤可以全域性地開啟或關閉配置檔案中的所有對映器已經配置的任何快取,預設是真,也就是預設開啟,這個配置就是二級快取的全域性開關。
2.快取介面
在MyBatis的的包org.apache.ibatis.cache中有介面快取記憶體,所有的快取實現都是圍繞該介面的。
package org.apache.ibatis.cache; import java.util.concurrent.locks.ReadWriteLock; /** * SPI for cache providers. * * One instance of cache will be created for each namespace. * * The cache implementation must have a constructor that receives the cache id as an String parameter. * * MyBatis will pass the namespace as id to the constructor. * * <pre> * public MyCache(final String id) { * if (id == null) { * throw new IllegalArgumentException("Cache instances require an ID"); * } * this.id = id; * initialize(); * } * </pre> * * @author Clinton Begin */ public interface Cache { /** * @return The identifier of this cache */ String getId(); /** * @param key Can be any object but usually it is a {@link CacheKey} * @param value The result of a select. */ void putObject(Object key, Object value); /** * @param key The key * @return The object stored in the cache. */ Object getObject(Object key); /** * As of 3.3.0 this method is only called during a rollback * for any previous value that was missing in the cache. * This lets any blocking cache to release the lock that * may have previously put on the key. * A blocking cache puts a lock when a value is null * and releases it when the value is back again. * This way other threads will wait for the value to be * available instead of hitting the database. * * * @param key The key * @return Not used */ Object removeObject(Object key); /** * Clears this cache instance */ void clear(); /** * Optional. This method is not called by the core. * * @return The number of elements stored in the cache (not its capacity). */ int getSize(); /** * Optional. As of 3.2.6 this method is no longer called by the core. * * Any locking needed by the cache must be provided internally by the cache provider. * * @return A ReadWriteLock */ ReadWriteLock getReadWriteLock(); }
該介面有一個實現,官方叫做永久實現,PerpetualCache
public class PerpetualCache implements Cache { private final String id; private Map<Object, Object> cache = new HashMap<Object, Object>(); public PerpetualCache(String id) { this.id = id; } @Override public String getId() { return id; } @Override public int getSize() { return cache.size(); } @Override public void putObject(Object key, Object value) { cache.put(key, value); } @Override public Object getObject(Object key) { return cache.get(key); } @Override public Object removeObject(Object key) { return cache.remove(key); } @Override public void clear() { cache.clear(); } @Override public ReadWriteLock getReadWriteLock() { return null; } @Override public boolean equals(Object o) { if (getId() == null) { throw new CacheException("Cache instances require an ID."); } if (this == o) { return true; } if (!(o instanceof Cache)) { return false; } Cache otherCache = (Cache) o; return getId().equals(otherCache.getId()); } @Override public int hashCode() { if (getId() == null) { throw new CacheException("Cache instances require an ID."); } return getId().hashCode(); } }
本地快取的實現就是使用該類來儲存快取的。
3.CacheKey
儲存一個查詢和其結果的對應關係使用的是地圖結構,那麼標識一個查詢就是鍵,這個鍵的MyBatis使用了一個物件CacheKey,
public class CacheKey implements Cloneable, Serializable {
private static final long serialVersionUID = 1146682552656046210L;
public static final CacheKey NULL_CACHE_KEY = new NullCacheKey();
private static final int DEFAULT_MULTIPLYER = 37;
private static final int DEFAULT_HASHCODE = 17;
private final int multiplier;
private int hashcode;
private long checksum;
private int count;
// 8/21/2017 - Sonarlint flags this as needing to be marked transient. While true if content is not serializable, this is not always true and thus should not be marked transient.
private List<Object> updateList;
public CacheKey() {
this.hashcode = DEFAULT_HASHCODE;
this.multiplier = DEFAULT_MULTIPLYER;
this.count = 0;
this.updateList = new ArrayList<Object>();
}
public CacheKey(Object[] objects) {
this();
updateAll(objects);
}
public int getUpdateCount() {
return updateList.size();
}
public void update(Object object) {
int baseHashCode = object == null ? 1 : ArrayUtil.hashCode(object);
count++;
checksum += baseHashCode;
baseHashCode *= count;
hashcode = multiplier * hashcode + baseHashCode;
updateList.add(object);
}
public void updateAll(Object[] objects) {
for (Object o : objects) {
update(o);
}
}
@Override
public boolean equals(Object object) {
if (this == object) {
return true;
}
if (!(object instanceof CacheKey)) {
return false;
}
final CacheKey cacheKey = (CacheKey) object;
if (hashcode != cacheKey.hashcode) {
return false;
}
if (checksum != cacheKey.checksum) {
return false;
}
if (count != cacheKey.count) {
return false;
}
for (int i = 0; i < updateList.size(); i++) {
Object thisObject = updateList.get(i);
Object thatObject = cacheKey.updateList.get(i);
if (!ArrayUtil.equals(thisObject, thatObject)) {
return false;
}
}
return true;
}
@Override
public int hashCode() {
return hashcode;
}
@Override
public String toString() {
StringBuilder returnValue = new StringBuilder().append(hashcode).append(':').append(checksum);
for (Object object : updateList) {
returnValue.append(':').append(ArrayUtil.toString(object));
}
return returnValue.toString();
}
@Override
public CacheKey clone() throws CloneNotSupportedException {
CacheKey clonedCacheKey = (CacheKey) super.clone();
clonedCacheKey.updateList = new ArrayList<Object>(updateList);
return clonedCacheKey;
}
}
大致分析可以看出是將查詢有關的因素都放在一個目錄中,在存放入列表中的時候會改變響應的系統值,最後比較的時候會比較這些值,以及引數個數,每個引數的值等等,具體可以看該類的equals()方法,測試過程中的帶參和不帶參的CacheKey toString值如下:
1037017427:-322002377:org.mapper.UserMapper.selectAll:0:2147483647:select * from tb_oder:development
170601707:446667724:org.mapper.UserMapper.selectByName:0:2147483647:select * from tb_oder其中name為concat(?, '%'):記者:發展
也就是說同一個對映的同一個方法,傳入的引數個數順序值都相同才能算是同一個查詢,這個時候才能匹配上快取的。
4.快取優先使用順序
當本地快取和二級快取同時存在時,查詢是優先使用那個快取呢?優先使用二級快取,看看原始碼DefaultSqlSessionFactory在建立的一個SqlSession的時候會去查詢是配置中的cacheEnabled配置,該配置為真則建立一個CachingExecutor,該執行器是二級快取的執行器。如果在該執行器中沒有找到則去BaseExecutor查詢,該查詢中使用的是本地快取。
private SqlSession openSessionFromDataSource(ExecutorType execType, TransactionIsolationLevel level, boolean autoCommit) {
Transaction tx = null;
try {
final Environment environment = configuration.getEnvironment();
final TransactionFactory transactionFactory = getTransactionFactoryFromEnvironment(environment);
tx = transactionFactory.newTransaction(environment.getDataSource(), level, autoCommit);
final Executor executor = configuration.newExecutor(tx, execType);
return new DefaultSqlSession(configuration, executor, autoCommit);
} catch (Exception e) {
closeTransaction(tx); // may have fetched a connection so lets call close()
throw ExceptionFactory.wrapException("Error opening session. Cause: " + e, e);
} finally {
ErrorContext.instance().reset();
}
}
public Executor newExecutor(Transaction transaction, ExecutorType executorType) {
executorType = executorType == null ? defaultExecutorType : executorType;
executorType = executorType == null ? ExecutorType.SIMPLE : executorType;
Executor executor;
if (ExecutorType.BATCH == executorType) {
executor = new BatchExecutor(this, transaction);
} else if (ExecutorType.REUSE == executorType) {
executor = new ReuseExecutor(this, transaction);
} else {
executor = new SimpleExecutor(this, transaction);
}
if (cacheEnabled) {
executor = new CachingExecutor(executor);
}
executor = (Executor) interceptorChain.pluginAll(executor);
return executor;
}
1037017427:-322002377:org.mapper.UserMapper.selectAll:0:2147483647:select * from tb_oder:development
1037017427:-322002377:org.mapper.UserMapper.selectAll:0:2147483647:select * from tb_oder:development
快取的cacheKey是根據相同的介面中相同方法引數相同環境相同
5.CachingExecutor查詢邏輯
public <E> List<E> query(MappedStatement ms, Object parameterObject, RowBounds rowBounds, ResultHandler resultHandler, CacheKey key, BoundSql boundSql)
throws SQLException {
Cache cache = ms.getCache();
if (cache != null) {
flushCacheIfRequired(ms);
if (ms.isUseCache() && resultHandler == null) {
ensureNoOutParams(ms, boundSql);
@SuppressWarnings("unchecked")
List<E> list = (List<E>) tcm.getObject(cache, key);
if (list == null) {
list = delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
tcm.putObject(cache, key, list); // issue #578 and #116
}
return list;
}
}
return delegate.<E> query(ms, parameterObject, rowBounds, resultHandler, key, boundSql);
}
查詢方法中我們可以看出先從中醫變數中查詢,如果沒有則繼續去BaseExecutor查詢,查詢後會將查詢結果存入到TCM中。下次執行查詢的時候,二級快取的查詢會從該中醫變數中查詢.tcm的原始碼如下:
public class TransactionalCacheManager {
private final Map<Cache, TransactionalCache> transactionalCaches = new HashMap<Cache, TransactionalCache>();
public void clear(Cache cache) {
getTransactionalCache(cache).clear();
}
public Object getObject(Cache cache, CacheKey key) {
return getTransactionalCache(cache).getObject(key);
}
public void putObject(Cache cache, CacheKey key, Object value) {
getTransactionalCache(cache).putObject(key, value);
}
public void commit() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.commit();
}
}
public void rollback() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.rollback();
}
}
private TransactionalCache getTransactionalCache(Cache cache) {
TransactionalCache txCache = transactionalCaches.get(cache);
if (txCache == null) {
txCache = new TransactionalCache(cache);
transactionalCaches.put(cache, txCache);
}
return txCache;
}
}
TransactionalCacheManager,我們可以稱之為事務快取管理器,因為它裡面儲存了一個地圖,地圖中以快取為重點,TransactionalCache為值,TransactionalCache的作用就是事務性的管理快取,其內部持有一個快取,也就是MappedStatement的快取物件,當TransactionalCacheManager提交的時候,會呼叫每個TransactionalCache的提交方法,該方法中,會將存入到TransactionalCache中的查詢結果集存入到它委派的快取物件中原始碼如下:
TransactionalCacheManager的提交()方法
public void commit() {
for (TransactionalCache txCache : transactionalCaches.values()) {
txCache.commit();
}
}
TransactionalCache的提交()方法
public void commit() {
if (clearOnCommit) {
delegate.clear();
}
flushPendingEntries();
reset();
}
TransactionalCache的flushPendingEntries()方法
private void flushPendingEntries() {
for (Map.Entry<Object, Object> entry : entriesToAddOnCommit.entrySet()) {
delegate.putObject(entry.getKey(), entry.getValue());
}
for (Object entry : entriesMissedInCache) {
if (!entriesToAddOnCommit.containsKey(entry)) {
delegate.putObject(entry, null);
}
}
}
該方法的作用就是在事務提交的時候,將把進入私有最終Map <Object,Object> entriesToAddOnCommit; 圖中的元素存放進真正的快取中,而不是裝飾器的快取中。這也就是為什麼會話1的第二次全選()方法沒有從二級快取中取出快取結果的原因,因為在TransactionalCacheManager中的放置方法其實只是將查詢結果儲存在了TransactionalCache的entriesToAddOnCommit集合中了,並沒有儲存進PerpetualCahce中現在來看看TransactionalCache的作用,官方的說明是:
6.快取裝飾器
看看原始碼包結構有那麼多類實現了快取記憶體介面,我們來分析下以上提到的快取物件
以上實現快取介面的永久類是PerpetualCache,其他都是對該類的裝飾,比如LoggingCache,就是對其快取命中的統計,原始碼如下:
public class LoggingCache implements Cache {
private final Log log;
private final Cache delegate;
protected int requests = 0;
protected int hits = 0;
public LoggingCache(Cache delegate) {
this.delegate = delegate;
this.log = LogFactory.getLog(getId());
}
@Override
public String getId() {
return delegate.getId();
}
@Override
public int getSize() {
return delegate.getSize();
}
@Override
public void putObject(Object key, Object object) {
delegate.putObject(key, object);
}
@Override
public Object getObject(Object key) {
requests++;
final Object value = delegate.getObject(key);
if (value != null) {
hits++;
}
if (log.isDebugEnabled()) {
log.debug("Cache Hit Ratio [" + getId() + "]: " + getHitRatio());
}
return value;
}
@Override
public Object removeObject(Object key) {
return delegate.removeObject(key);
}
@Override
public void clear() {
delegate.clear();
}
@Override
public ReadWriteLock getReadWriteLock() {
return null;
}
@Override
public int hashCode() {
return delegate.hashCode();
}
@Override
public boolean equals(Object obj) {
return delegate.equals(obj);
}
private double getHitRatio() {
return (double) hits / (double) requests;
}
}
可以看出在從快取中取出時候,它會統計命中情況,在除錯級別的日誌時會打印出命中率,這也就是我們在上一篇中看到的
快取命中率[org.test.mapper.UserMapper]:0.0
我們從MappedStatement中獲取的快取物件是經過四層裝飾的SynchronizedCache,結構如下圖
7.快取查詢順序總結:
注意:如果第一次會話上沒有提交,則第一次會議中的多次相同查詢都是不能從二級快取中查詢出來的,只有第一次快取提交後,後續的會話的查詢才能使用二級快取中的結果。