1. 程式人生 > >【閱讀筆記】Dynamical time series analytics

【閱讀筆記】Dynamical time series analytics

前幾天去廈門開會(DDAP10),全英文演講加之大家口音都略重,說實話聽演講主要靠看ppt,摘出一篇聽懂的寫篇部落格紀念一下吧。

11.2 Session-A 13:30-18:00 WICC G201

Time Speaker No. Title
14:30-15:00 Wei Lin ST-07 Dynamical time series analytics: From networks construction to dynamics prediction

主要講了他的兩個工作,一個是重構的工作,一個是預測的工作,分別發表在PRE和PNAS上。

第一篇工作

Detection of time delays and directional interactions based on time series from complex dynamical systems

在這裡插入圖片描述

ABSTRACT

Data-based and model-free accurate identification of intrinsic(固有) time delays and directional interactions.

METHOD

Given a time series x ( t ) x(t) , one forms a manifold(流形) M

X R n M_X\in R^n based on delay coordinate embedding: X ( t ) = [ x ( t ) , x ( t δ t ) , . . . , x ( t ( n 1 ) δ t ) ] X(t) = [x(t),x(t − \delta t), . . . ,x(t − (n − 1)\delta t)] , where n n is the embedding dimension and δ t \delta t is a proper time lag.

CME method:

Say we are given time series x ( t ) x(t) and y ( t ) y(t) as well as a set of possible time delays: Γ = { τ 1 , τ 2 , , τ m } \Gamma = \{\tau_1,\tau_2, … ,\tau_m\} . For each candidate time delay τ i \tau_i , we let z ( t ) = x ( t τ i ) z(t) = x(t − \tau_i) and form the manifolds M Y M_Y and M Z M_Z with n y n_y and n z n_z being the respective embedding dimensions. For each point Y ( t ^ ) M Y Y(\hat{t}) \in M_Y , we find K K nearest neighbors Y ( t j ) ( j = 1 , 2 , , K ) Y(t_j)(j = 1,2, …,K) , which are mapped to the mutual neighbors Z ( t j ) M Z ( j = 1 , 2 , , K ) Z(t_j) \in M_Z(j = 1,2, …,K) by the cross map. We then estimate Z ( t ) Z(t) by averaging these mutual neighbors through Z ^ ( t ^ ) M Y = ( 1 / K ) j = 1 K Z ( t j ) \hat{Z}(\hat{t})|M_Y=(1/K)\sum^K_{j=1}Z(t_j) . Finally, we define the CME score as

s ( τ ) = ( n Z ) 1 t r a c e ( Σ Z ^ 1 c o v ( Z ^ , Z ) Σ Z 1 ) s(\tau)=(n_Z)^{-1}trace(\Sigma_{\hat{Z}}^{-1}cov(\hat{Z},Z)\Sigma_Z^{-1})

It is straightforward to show 0 s 1 0\leq s\leq 1 . The larger the value of s s , the stronger the driving force from x ( t τ ) x(t−\tau) to y ( t ) y(t) . In a plot of s ( τ ) s(\tau) , if there is a peak at τ k Γ \tau_k\in \Gamma , the time delay from X X to Y Y can be identified as τ k \tau_k .
可以理解為如果 x x 是以延遲 τ k \tau_k 作用於 y y ,那麼當 y y 的情況( Y Y )類似時, τ k \tau_k 之前的 x x (也就是 z z )的情況( Z Z )也應該類似(協方差大,相關性強),形式上和pearson相關係數一樣。

RESULTS

To validate our CME method, we begin with a discrete-time logistic model of two non-identical species:

X t + 1 = X t ( γ x γ x X t K 1 Y t τ 1 ) X_{t+1}=X_t(\gamma_x-\gamma_xX_t-K_1Y_{t-\tau_1})