windows下idea編寫WordCount程式,並打jar包上傳到hadoop叢集執行(傻瓜版)
通常會在IDE中編制程式,然後打成jar包,然後提交到叢集,最常用的是建立一個Maven專案,利用Maven來管理jar包的依賴。
一、生成WordCount的jar包
1. 開啟IDEA,File→New→Project→Maven→Next→填寫Groupld和Artifactld→Next→Finish
2. 配置Maven的pom.xml(配置好pom.xml以後,點選Enable Auto-Import即可):
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.wu</groupId> <artifactId>sparkWordCount</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>1.7</maven.compiler.source> <maven.compiler.target>1.7</maven.compiler.target> <encoding>UTF-8</encoding> <scala.version>2.10.6</scala.version> <scala.compat.version>2.10</scala.compat.version> </properties> <dependencies> <dependency> <groupId>org.scala-lang</groupId> <artifactId>scala-library</artifactId> <version>${scala.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.10</artifactId> <version>1.5.2</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.2</version> </dependency> </dependencies> <build> <sourceDirectory>src/main/scala</sourceDirectory> <testSourceDirectory>src/test/scala</testSourceDirectory> <plugins> <plugin> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.2.0</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> <configuration> <args> <arg>-make:transitive</arg> <arg>-dependencyfile</arg> <arg>${project.build.directory}/.scala_dependencies</arg> </args> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.18.1</version> <configuration> <useFile>false</useFile> <disableXmlReport>true</disableXmlReport> <includes> <include>**/*Test.*</include> <include>**/*Suite.*</include> </includes> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-shade-plugin</artifactId> <version>2.3</version> <executions> <execution> <phase>package</phase> <goals> <goal>shade</goal> </goals> <configuration> <filters> <filter> <artifact>*:*</artifact> <excludes> <exclude>META-INF/*.SF</exclude> <exclude>META-INF/*.DSA</exclude> <exclude>META-INF/*.RSA</exclude> </excludes> </filter> </filters> <transformers> <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer"> <mainClass>com.wu.WordCount</mainClass> </transformer> </transformers> </configuration> </execution> </executions> </plugin> </plugins> </build> </project>
注意:這裡需要修改Hadoop版本
3:將src/main/java和src/test/java分別修改成src/main/scala和src/test/scala,與pom.xml中的配置保持一致();
操作:java→Refactor→Rename
4:新建一個com.bie包,再新建一個scala class,型別為Object,spark程式如下:
package com.wu import org.apache.spark.{SparkConf, SparkContext} object WordCount { def main(args: Array[String]): Unit = { //建立SparkConf()並且設定App的名稱 val conf = new SparkConf().setAppName("wordCount"); //建立SparkContext,該物件是提交spark app的入口 val sc = new SparkContext(conf); //使用sc建立rdd,並且執行相應的transformation和action sc.textFile(args(0)).flatMap(_.split(" ")).map((_ ,1)).reduceByKey(_ + _,1).sortBy(_._2,false).saveAsTextFile(args(1)); //停止sc,結束該任務 sc.stop(); } }
5. 修改pom.xml中的mainClass,使其和自己的類路徑對應起來:
6. 使用Maven打包:點選IDEA右側的Maven Project選項,點選Lifecycle,選擇clean和package,然後點選Run Maven Build:
等待編譯完成,選擇編譯成功的jar包,target/sparkWordCount-1.0-SNAPSHOT.jar
二、執行
1. 開啟xshell,檔案→新建連線
新建好後輸入使用者名稱和密碼,建立連線。
2. 使用Xftp新建檔案傳輸(Ctrl+Alt+F),將剛剛生成的jar包和WordCount拖拽至 /home/hdfs目錄下
3. 使用Xshell將WordCount.txt上傳至hdfs系統
切換至hdfs使用者:[[email protected] ~]# su hdfs
到spark的bin目錄下:[[email protected] root]$ cd /home/hdfs/software/spark/bin
在hdfs系統中新建input資料夾:hadoop fs -mkdir /input
檢視是否新建成功:[[email protected] bin]$ cd /home/hdfs/software/hadoop/bin #轉到該目錄下
[[email protected] bin]$ ./hadoop fs -ls /
將txt檔案上傳至input資料夾:[[email protected] root]$ cd /home/hdfs/software/spark/bin #轉回到該目錄
[[email protected] bin]$ hadoop fs -put /home/hdfs/WordCount.txt /input
檢視是否上傳成功:[[email protected] bin]$ cd /home/hdfs/software/hadoop/bin #轉到該目錄下
[[email protected] bin]$ ./hadoop fs -ls /input
返回hdfs使用者根目錄:cd ~
使用spark-submit命令提交Spark應用:[[email protected] ~]$ /home/hdfs/software/spark/bin/spark-submit --class com.bie.WordCount sparkWordCount-1.0-SNAPSHOT.jar hdfs://data2.cshdp.com:9000/input/WordCount.txt hdfs://data2.cshdp.com:9000/output
檢視執行結果:[[email protected] bin]$ cd /home/hdfs/software/hadoop/bin #轉到該目錄下
[[email protected] bin]$ ./hadoop fs -ls /output
[[email protected] bin]$ ./hadoop fs -cat /output/part-00000 #檢視檔案內容