LeetCode74:Search a 2D Matrix
阿新 • • 發佈:2018-11-29
Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:
- Integers in each row are sorted from left to right.
- The first integer of each row is greater than the last integer of the previous row.
Example 1:
Input: matrix = [ [1, 3, 5, 7], [10, 11, 16, 20], [23, 30, 34, 50] ] target = 3 Output: true
Example 2:
Input:
matrix = [
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
target = 13
Output: false
LeetCode:連結
第一種解法:和 劍指Offer_程式設計題01:二維陣列中的查詢是一樣的。
首先選取陣列中右上角的數字。如果要選左上角的數字,target比它大,是應該向右找還是應該向左找呢?這個是不確定的。所以應該從可以確定方向的數字開始找其。如果該數字等於要查詢的數字,查詢過程結束;如果該數字大於要查詢的陣列,就向它前一列找,如果該數字小於要查詢的陣列,就向他下一行找。
class Solution(object): def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if len(matrix) == 0: return False row = len(matrix) col = len(matrix[0]) i, j = 0, col - 1 while i < row and j >= 0: if target == matrix[i][j]: return True elif target > matrix[i][j]: i += 1 else: j -= 1 return False
第二種方法:兩次二分。一開始先確定行,取每行第一個數進行查詢。之後在這一行進行查詢該元素。
class Solution(object):
def searchMatrix(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
if len(matrix) == 0 or matrix == [[]]:
return False
row = len(matrix)
col = len(matrix[0])
# 必須用索引形式記錄row的最大值 如果接下來在確定row的時候沒有符合要求的 得返回row的最大索引 row-1
cur_row = row - 1
for i in range(row):
# 必須得是小於等於 如果不等於 就完全錯過了這一排
if target <= matrix[i][col-1]:
cur_row = i
break
low = 0
high = col - 1
while low <= high:
mid = (low + high) // 2
if matrix[cur_row][mid] == target:
return True
elif matrix[cur_row][mid] > target:
high = mid - 1
else:
low = mid + 1
return False
第三種方法:正是因為有The first integer of each row is greater than the last integer of the previous row.條件的存在,可以直接把矩陣看成一維的,即L=0,R=m*n-1,而每次matrix[mid/n][mid%n]即可。
class Solution(object):
def searchMatrix(self, matrix, target):
"""
:type matrix: List[List[int]]
:type target: int
:rtype: bool
"""
if not matrix:
return False
m, n = len(matrix), len(matrix[0])
low, high = 0, m*n - 1
while low <= high:
mid = (low + high) // 2
if matrix[mid//n][mid%n] == target:
return True
elif matrix[mid//n][mid%n] > target:
high = mid - 1
else:
low = mid + 1
return False