Mosaic 【HDU - 4819】【二維線段樹】
阿新 • • 發佈:2018-11-30
題目連結
這道題難就只是難在題目難讀,題意讀懂後就是一道普通的二維線段樹更新查詢問題。
題意:給你一個N*N的矩陣,並且已經建立了初始值,然後給你個點以及L,很多人不解其義,其實就是給你個點,然後查的是以(x, y)為基礎的點,在以左上角(x-L/2, y-L/2)為其中一個端點,另一個端點右下角(x+L/2, y+L/2)的所覆蓋區間內的最大值與最小值的平均值賦給(x, y)這個點,並輸出新值。
#include <iostream> #include <cstdio> #include <cmath> #include <string> #include <cstring> #include <algorithm> #include <limits> #include <vector> #include <stack> #include <queue> #include <set> #include <map> #define lowbit(x) ( x&(-x) ) #define INF 0x3f3f3f3f #define pi 3.141592653589793 #define e 2.718281828459045 using namespace std; typedef unsigned long long ull; typedef long long ll; const int maxN = 805; int N, Q, a[maxN][maxN]; struct node { int maxx, minn; node(int a=0, int b=0):maxx(a), minn(b) {} }tree[maxN<<2][maxN<<2]; void pushup(int rt, int fa) { tree[fa][rt].maxx = max(tree[fa][rt<<1].maxx, tree[fa][rt<<1|1].maxx); tree[fa][rt].minn = min(tree[fa][rt<<1].minn, tree[fa][rt<<1|1].minn); } void build_In(int rt, int fa, int l, int r, bool flag, int pos) { if(l == r) { if(flag) tree[fa][rt] = node(a[pos][l], a[pos][l]); else { tree[fa][rt].maxx = max(tree[fa<<1][rt].maxx, tree[fa<<1|1][rt].maxx); tree[fa][rt].minn = min(tree[fa<<1][rt].minn, tree[fa<<1|1][rt].minn); } return; } int mid = (l + r)>>1; build_In(rt<<1, fa, l, mid, flag, pos); build_In(rt<<1|1, fa, mid+1, r, flag, pos); pushup(rt, fa); } void build_Out(int rt, int l, int r) { if(l == r) { build_In(1, rt, 1, N, true, l); return; } int mid = (l + r)>>1; build_Out(rt<<1, l, mid); build_Out(rt<<1|1, mid+1, r); build_In(1, rt, 1, N, false, 0); } void update_In(int rt, int fa, int l, int r, int qy, int val, bool flag) { if(l == r) { if(flag) tree[fa][rt] = node(val, val); else { tree[fa][rt].maxx = max(tree[fa<<1][rt].maxx, tree[fa<<1|1][rt].maxx); tree[fa][rt].minn = min(tree[fa<<1][rt].minn, tree[fa<<1|1][rt].minn); } return; } int mid = (l + r)>>1; if(qy>mid) update_In(rt<<1|1, fa, mid+1, r, qy, val, flag); else update_In(rt<<1, fa, l, mid, qy, val, flag); pushup(rt, fa); } void update_Out(int rt, int l, int r, int qx, int qy, int val) { if(l == r) { update_In(1, rt, 1, N, qy, val, true); return; } int mid = (l + r)>>1; if(qx>mid) update_Out(rt<<1|1, mid+1, r, qx, qy, val); else update_Out(rt<<1, l, mid, qx, qy, val); update_In(1, rt, 1, N, qy, val, false); } void query_In(int rt, int fa, int l, int r, int ql, int qr, int &maxx, int &minn) { if(ql<=l && qr>=r) { maxx = max(maxx ,tree[fa][rt].maxx); minn = min(minn, tree[fa][rt].minn); return; } int mid = (l + r)>>1; if(ql>mid) query_In(rt<<1|1, fa, mid+1, r, ql, qr, maxx, minn); else if(qr<=mid) query_In(rt<<1, fa, l, mid, ql, qr, maxx, minn); else { query_In(rt<<1, fa, l, mid, ql, qr, maxx, minn); query_In(rt<<1|1, fa, mid+1, r, ql, qr, maxx, minn); } } void query_Out(int rt, int l, int r, int qlx, int qly, int qrx, int qry, int &maxx, int &minn) { if(qlx<=l && qrx>=r) { query_In(1, rt, 1, N, qly, qry, maxx, minn); return; } int mid = (l + r)>>1; if(qlx>mid) query_Out(rt<<1|1, mid+1, r, qlx, qly, qrx, qry, maxx, minn); else if(qrx<=mid) query_Out(rt<<1, l, mid, qlx, qly, qrx, qry, maxx, minn); else { query_Out(rt<<1|1, mid+1, r, qlx, qly, qrx, qry, maxx, minn); query_Out(rt<<1, l, mid, qlx, qly, qrx, qry, maxx, minn); } } int main() { int T; scanf("%d", &T); for(int Cas=1; Cas<=T; Cas++) { scanf("%d", &N); for(int i=1; i<=N; i++) for(int j=1; j<=N; j++) scanf("%d", &a[i][j]); build_Out(1, 1, N); scanf("%d", &Q); printf("Case #%d:\n", Cas); while(Q--) { int x, y, l, lx, ly, rx, ry, mid_d, ans; scanf("%d%d%d", &x, &y, &l); int MAXX = 0, MINN = INF; mid_d = l>>1; lx = x - mid_d; ly = y - mid_d; rx = x + mid_d; ry = y + mid_d; query_Out(1, 1, N, lx, ly, rx, ry, MAXX, MINN); ans = (MAXX + MINN)/2; update_Out(1, 1, N, x, y, ans); printf("%d\n", ans); } } return 0; }