tensorflow 批次讀取檔案內的資料,並將順序隨機化處理. --[python]
阿新 • • 發佈:2018-11-30
使用tensorflow批次的讀取預處理之後的文字資料,並將其分為一個迭代器批次:
比如此刻,我有一個處理之後的資料包: data.csv shape =(8,10),其中這個結構中,前五個列為feature , 後五列為label
1,2,3,4,5,6,7,8,9,10 11,12,13,14,15,16,17,18,19,20 21,22,23,24,25,26,27,28,29,30 31,32,33,34,35,36,37,38,39,40 41,42,43,44,45,46,47,48,49,50 51,52,53,54,55,56,57,58,59,60 1,1,1,1,1,2,2,2,2,2 3,3,3,3,3,4,4,4,4,4
現在我需要將其分為4個批次: 也就是每個批次batch的大小為2
然後我可能需要將其順序打亂,所以這裡提供了兩種方式,順序和隨機
#!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'xijun1' import tensorflow as tf import numpy as np # data = np.arange(1, 100 + 1) # print ",".join( [str(i) for i in data]) # data_input = tf.constant(data) filename_queue = tf.train.string_input_producer(["data.csv"]) reader = tf.TextLineReader(skip_header_lines=0) key, value = reader.read(filename_queue) # decode_csv will convert a Tensor from type string (the text line) in # a tuple of tensor columns with the specified defaults, which also # sets the data type for each column words_size = 5 # 每一行資料的長度decoded = tf.decode_csv( value, field_delim=',', record_defaults=[[0] for i in range(words_size * 2)]) batch_size = 2 # 每一個批次的大小 # 隨機 batch_shuffle = tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * words_size, min_after_dequeue=batch_size) #順序 batch_no_shuffle = tf.train.batch(decoded, batch_size=batch_size, capacity=batch_size * words_size, allow_smaller_final_batch=batch_size) shuffle_features = tf.transpose(tf.stack(batch_shuffle[0:words_size])) shuffle_label = tf.transpose(tf.stack(batch_shuffle[words_size:])) features = tf.transpose(tf.stack(batch_no_shuffle[0:words_size])) label = tf.transpose(tf.stack(batch_no_shuffle[words_size:])) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(8/batch_size): print (i+10, sess.run([shuffle_features, shuffle_label])) print (i, sess.run([features, label])) coord.request_stop() coord.join(threads)
當我們執行的時候,我們可以得到這個結果:
(10, [array([[ 1, 2, 3, 4, 5], [31, 32, 33, 34, 35]], dtype=int32), array([[ 6, 7, 8, 9, 10], [36, 37, 38, 39, 40]], dtype=int32)]) (0, [array([[11, 12, 13, 14, 15], [21, 22, 23, 24, 25]], dtype=int32), array([[16, 17, 18, 19, 20], [26, 27, 28, 29, 30]], dtype=int32)]) (11, [array([[51, 52, 53, 54, 55], [ 3, 3, 3, 3, 3]], dtype=int32), array([[56, 57, 58, 59, 60], [ 4, 4, 4, 4, 4]], dtype=int32)]) (1, [array([[41, 42, 43, 44, 45], [ 1, 1, 1, 1, 1]], dtype=int32), array([[46, 47, 48, 49, 50], [ 2, 2, 2, 2, 2]], dtype=int32)]) (12, [array([[ 3, 3, 3, 3, 3], [11, 12, 13, 14, 15]], dtype=int32), array([[ 4, 4, 4, 4, 4], [16, 17, 18, 19, 20]], dtype=int32)]) (2, [array([[ 1, 2, 3, 4, 5], [21, 22, 23, 24, 25]], dtype=int32), array([[ 6, 7, 8, 9, 10], [26, 27, 28, 29, 30]], dtype=int32)]) (13, [array([[31, 32, 33, 34, 35], [ 1, 1, 1, 1, 1]], dtype=int32), array([[36, 37, 38, 39, 40], [ 2, 2, 2, 2, 2]], dtype=int32)]) (3, [array([[41, 42, 43, 44, 45], [ 1, 1, 1, 1, 1]], dtype=int32), array([[46, 47, 48, 49, 50], [ 2, 2, 2, 2, 2]], dtype=int32)])