1. 程式人生 > >tensorflow 批次讀取檔案內的資料,並將順序隨機化處理. --[python]

tensorflow 批次讀取檔案內的資料,並將順序隨機化處理. --[python]

使用tensorflow批次的讀取預處理之後的文字資料,並將其分為一個迭代器批次:

比如此刻,我有一個處理之後的資料包: data.csv  shape =(8,10),其中這個結構中,前五個列為feature , 後五列為label

1,2,3,4,5,6,7,8,9,10
11,12,13,14,15,16,17,18,19,20
21,22,23,24,25,26,27,28,29,30
31,32,33,34,35,36,37,38,39,40
41,42,43,44,45,46,47,48,49,50
51,52,53,54,55,56,57,58,59,60
1,1,1,1,1,2,2,2,2,2
3,3,3,3,3,4,4,4,4,4

現在我需要將其分為4個批次: 也就是每個批次batch的大小為2

然後我可能需要將其順序打亂,所以這裡提供了兩種方式,順序和隨機

#!/usr/bin/env python
# -*- coding: utf-8 -*-
__author__ = 'xijun1'
import tensorflow as tf
import numpy as np

# data = np.arange(1, 100 + 1)
# print ",".join( [str(i) for i in data])
# data_input = tf.constant(data)
filename_queue = tf.train.string_input_producer(["
data.csv"]) reader = tf.TextLineReader(skip_header_lines=0) key, value = reader.read(filename_queue) # decode_csv will convert a Tensor from type string (the text line) in # a tuple of tensor columns with the specified defaults, which also # sets the data type for each column words_size = 5 # 每一行資料的長度
decoded = tf.decode_csv( value, field_delim=',', record_defaults=[[0] for i in range(words_size * 2)]) batch_size = 2 # 每一個批次的大小 # 隨機 batch_shuffle = tf.train.shuffle_batch(decoded, batch_size=batch_size, capacity=batch_size * words_size, min_after_dequeue=batch_size) #順序 batch_no_shuffle = tf.train.batch(decoded, batch_size=batch_size, capacity=batch_size * words_size, allow_smaller_final_batch=batch_size) shuffle_features = tf.transpose(tf.stack(batch_shuffle[0:words_size])) shuffle_label = tf.transpose(tf.stack(batch_shuffle[words_size:])) features = tf.transpose(tf.stack(batch_no_shuffle[0:words_size])) label = tf.transpose(tf.stack(batch_no_shuffle[words_size:])) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) for i in range(8/batch_size): print (i+10, sess.run([shuffle_features, shuffle_label])) print (i, sess.run([features, label])) coord.request_stop() coord.join(threads)

當我們執行的時候,我們可以得到這個結果:

(10, [array([[ 1,  2,  3,  4,  5],
       [31, 32, 33, 34, 35]], dtype=int32), array([[ 6,  7,  8,  9, 10],
       [36, 37, 38, 39, 40]], dtype=int32)])
(0, [array([[11, 12, 13, 14, 15],
       [21, 22, 23, 24, 25]], dtype=int32), array([[16, 17, 18, 19, 20],
       [26, 27, 28, 29, 30]], dtype=int32)])
(11, [array([[51, 52, 53, 54, 55],
       [ 3,  3,  3,  3,  3]], dtype=int32), array([[56, 57, 58, 59, 60],
       [ 4,  4,  4,  4,  4]], dtype=int32)])
(1, [array([[41, 42, 43, 44, 45],
       [ 1,  1,  1,  1,  1]], dtype=int32), array([[46, 47, 48, 49, 50],
       [ 2,  2,  2,  2,  2]], dtype=int32)])
(12, [array([[ 3,  3,  3,  3,  3],
       [11, 12, 13, 14, 15]], dtype=int32), array([[ 4,  4,  4,  4,  4],
       [16, 17, 18, 19, 20]], dtype=int32)])
(2, [array([[ 1,  2,  3,  4,  5],
       [21, 22, 23, 24, 25]], dtype=int32), array([[ 6,  7,  8,  9, 10],
       [26, 27, 28, 29, 30]], dtype=int32)])
(13, [array([[31, 32, 33, 34, 35],
       [ 1,  1,  1,  1,  1]], dtype=int32), array([[36, 37, 38, 39, 40],
       [ 2,  2,  2,  2,  2]], dtype=int32)])
(3, [array([[41, 42, 43, 44, 45],
       [ 1,  1,  1,  1,  1]], dtype=int32), array([[46, 47, 48, 49, 50],
       [ 2,  2,  2,  2,  2]], dtype=int32)])