1. 程式人生 > >洛谷P3241 [HNOI2015]開店 [樹鏈剖分,主席樹,lca]

洛谷P3241 [HNOI2015]開店 [樹鏈剖分,主席樹,lca]

又是一道黑題,不容易啊。。。

連結

首先,不管年齡的限制,問題即可簡化為:給定一個點,求其他所有點到當前點的距離

回想一下樹上兩點距離公式:dis_ {u,v} =dep_u+dep_v-2*dep_{lca_{u,v}},兩點距離等於兩點深度相加減去lca的深度乘二

點的深度可以一次O(n)的dfs解決,問題轉化為求對於一個點u,\sum dep_{lca_{u,v}},字好小啊。。。

回想 [LNOI2014]LCA 中求這東西的套路,我們可以把每一個v到根的路徑的tag加一,那麼只需要求u到根的路徑的權值乘tag就可以了(語文不好請見諒,如果沒有看懂可以去看[LNOI2014]LCA題解

上面那東西很明顯的一個樹鏈剖分+線段樹即可

現在把年齡的限制加上,怎麼辦呢?

看標題,還有什麼沒有用?主席樹!

現在求距離不就是有兩個限制了嗎?此時把怪獸按年齡排序,把原有的線段樹改為主席樹即可

還有一個問題:主席樹的區間修改不能像普通線段樹一樣標記下放,要搞一個叫做標記永久化的東西,卡了我好久

細節挺多的,改了一天,一定是因為我太菜了

程式碼:

#include<bits/stdc++.h>
#define sz 150050
using namespace std;
typedef long long ll;
struct hh{int t;ll w;int nxt;}edge[sz<<1];
int head[sz],ecnt;
void make_edge(int f,int t,ll w)
{
	edge[++ecnt]=(hh){t,w,head[f]};
	head[f]=ecnt;
	edge[++ecnt]=(hh){f,w,head[t]};
	head[t]=ecnt;
}
#define go(x) for (register int i=head[x];i;i=edge[i].nxt)
#define o edge[i].t
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
int T,top[sz],son[sz],fa[sz],size[sz],dfn[sz],dep[sz];
ll deep[sz],fr[sz],sumd[sz];
void dfs1(int x)
{
	size[x]=1;dep[x]=dep[fa[x]]+1;
	go(x) if (o!=fa[x])
	{
		fa[o]=x;fr[o]=edge[i].w;deep[o]=deep[x]+edge[i].w;
		dfs1(o);
		size[x]+=size[o];
		if (size[o]>size[son[x]]) son[x]=o;
	}
}
void dfs2(int x,int tp)
{
	top[x]=tp;dfn[x]=++T;sumd[T]=sumd[T-1]+fr[x];
	if (son[x]) dfs2(son[x],tp);
	go(x) if (o!=son[x]&&o!=fa[x]) dfs2(o,o);
}
/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/
namespace P_Seg
{
	struct P{ll sum,tag;int ls,rs;}tr[10000010];
	int cnt,root[sz];
	int modify(int pre,int l,int r,int x,int y)
	{
		int k=++cnt;tr[k]=tr[pre];
		if (l==x&&r==y){tr[k].tag++;return k;}
		tr[k].sum+=sumd[y]-sumd[x-1];
		int mid=(l+r)>>1;
		if (x>mid) tr[k].rs=modify(tr[pre].rs,mid+1,r,x,y);
		else if (y<=mid) tr[k].ls=modify(tr[pre].ls,l,mid,x,y);
		else tr[k].ls=modify(tr[pre].ls,l,mid,x,mid),tr[k].rs=modify(tr[pre].rs,mid+1,r,mid+1,y);
		return k;
	}
	ll query(int k,int l,int r,int x,int y)
	{
		if (!k) return 0;
		ll ret=tr[k].tag*(sumd[y]-sumd[x-1]);
		if (x==l&&r==y) return ret+tr[k].sum;
		int mid=(l+r)>>1;
		if (x>mid) return ret+query(tr[k].rs,mid+1,r,x,y);
		else if (y<=mid) return ret+query(tr[k].ls,l,mid,x,y);
		else return ret+query(tr[k].ls,l,mid,x,mid)+query(tr[k].rs,mid+1,r,mid+1,y);
	}
}
int rt;
using namespace P_Seg;
int add(int x)
{
	while (top[x]!=1) rt=modify(rt,1,T,dfn[top[x]],dfn[x]),x=fa[top[x]];
	return rt=modify(rt,1,T,1,dfn[x]);
}
ll qsum(int x,int rt)
{
	ll ret=0;
	while (top[x]!=1) ret+=query(root[rt],1,T,dfn[top[x]],dfn[x]),x=fa[top[x]];
	ret+=query(root[rt],1,T,1,dfn[x]);
	return ret;
}
int n,Q,A;
struct HH
{
	int age,id;
	const bool operator < (const HH &x) const {return age!=x.age?age<x.age:id<x.id;}
}a[sz];
int b[sz];
template<typename QAQ>
inline void read(QAQ& t)
{
    t=0;
    int f=1;
    char ch=getchar();
    while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
    while (ch>='0'&&ch<='9') t=t*10+ch-'0',ch=getchar();
    t*=f;
}
template<typename QAQ,typename... Args>
inline void read(QAQ& t,Args&... args){read(t); read(args...);}
int tot;
ll Deep[sz];
int work()
{
	int i,u,x,y,z,L,R;
	ll lastans=0;
	read(n,Q,A);
	for (i=1;i<=n;i++) read(b[i]),a[i]=(HH){b[i],i};
	sort(b+1,b+n+1);sort(a+1,a+n+1);
	for (i=1;i<n;i++) read(x,y,z),make_edge(x,y,z);
	dfs1(1);dfs2(1,1);
	for (i=1;i<=n;i++) Deep[i]=Deep[i-1]+deep[a[i].id];
	for (i=1;i<=n;i++) root[i]=add(a[i].id);
	while (Q--)
	{
		read(u,x,y);
		L=min((x+lastans)%A,(y+lastans)%A);
		R=max((x+lastans)%A,(y+lastans)%A);
		L=lower_bound(a+1,a+n+1,(HH){L,0})-a;R=upper_bound(a+1,a+n+1,(HH){R,(int)1e9+1})-a-1;
		lastans=1ll*(R-L+1)*deep[u]+Deep[R]-Deep[L-1]-2ll*(qsum(u,R)-qsum(u,L-1));
		printf("%lld\n",lastans);
	}
	return 0;
}
int HHHH=work();//皮一下
int main(){}