1. 程式人生 > >Mysterious Bacteria 唯一分解定理+素數篩

Mysterious Bacteria 唯一分解定理+素數篩

 題目大意:

給你一個數x = b^p,求p的最大值

 

x = p1^x1*p2^x2*p3^x3*...*ps^xs

開始我以為是找x1、x2、... 、xs中的最大值,後來發現想錯了,x = b^p, x只有一個因子的p次冪構成

如果x = 12 = 2^2*3^1,要讓x = b^p,及12應該是12 = 12^1

所以p = gcd(x1, x2, x3, ... , xs);

比如:24 = 2^3*3^1,p應該是gcd(3, 1) = 1,即24 = 24^1

         324 = 3^4*2^2,p應該是gcd(4, 2) = 2,即324 = 18^2

Each case starts with a line containing an integer x. You can assume that x will have magnitude at least 2(被這坑了) and be within the range of a 32 bit signed(有符號) integer.

狗屎題,本題有一個坑,就是x可能為負數,如果x為負數的話,x = b^q, q必須使奇數,所以將x轉化為正數求得的解如果是偶數的話必須將其一直除2轉化為奇數

#include <iostream>
#include<stdio.h>
#include <bits/stdc++.h>
#define ll long long
using namespace std;
ll prime[1000006],t,n,ans,isprime[1000006],top,ss[1000006];
void check()
{
    for(int i=2; i<1000006; i++)
    {
        if(isprime[i]==0)
            prime[ans++]=i;
        for(int j=0; j<ans&&i*prime[j]<1000006; j++)
        {
            isprime[i*prime[j]]=1;
            if(i%prime[j]==0)
                break;
        }
    }
}//線性篩,通過這個題我知道線性篩比我之前打的那個快
bool cmp(ll a,ll b)
{
    return a>b;
}
ll gcd(ll a,ll b)
{
    if(b==0)
        return a;
    return gcd(b,a%b);
}
int main()
{
    check();
    scanf("%lld",&t);
    while(t--)
    {
        int flot=1;
        scanf("%lld",&n);
        if(n<0)
        {
            n=-n;
            flot=0;
        }
        memset(ss,0,sizeof(ss));
        printf("Case %lld: ",++top);
        for(int i=0; i<ans; i++)
        {
            while(n%prime[i]==0)
            {
                n/=prime[i];
                ss[i]++;
            }
        }
        if(n!=1)
            ss[ans]=1;
        sort(ss,ss+ans+1,cmp);//如果不存排序的話,普通篩就過
        ll sum=ss[0];
        for(int i=1; i<ans+1; i++)
        {
            if(ss[i]==0)
                break;
            sum=gcd(sum,ss[i]);

        }
        if(flot==0)
        {
            while(sum%2==0)
                sum/=2;
        }
        printf("%lld\n",sum);
    }
    return 0;
}