tensorflow-條件循環控制(1)
阿新 • • 發佈:2018-12-03
urn import ESS optional one port eat != entity TensorFlow 提供了一些操作和類,您可以使用它們來控制操作的執行,並向圖表添加條件依賴項。
tf.identity
tf.tuple
tf.group
tf.no_op
tf.count_up_to
tf.cond
tf.case
tf.while_loop
tf.identity
?
tf.identity(
? ? input,
? ? name=None
)
返回和輸入大小與內容一致的tensor
參數:
input: 一個Tensor.
name: 操作名字(可選)
這個方法的源碼:
def identity(input, name=None): # pylint: disable=redefined-builtin r"""Return a tensor with the same shape and contents as input. Args: input: A `Tensor`. name: A name for the operation (optional). Returns: A `Tensor`. Has the same type as `input`. """ if context.executing_eagerly(): input = ops.convert_to_tensor(input) in_device = input.device # TODO(ashankar): Does ‘identity‘ need to invoke execution callbacks? context_device = context.context().device_name if not context_device: context_device = "/job:localhost/replica:0/task:0/device:CPU:0" if context_device != in_device: return input._copy() # pylint: disable=protected-access return input else: return gen_array_ops.identity(input, name=name)
從源碼可看出,input的device會與context.context()相比較,如果相同,則直接返回input,如果不相同則返回disable=protected-access權限的input的copy。
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Aug 27 11:16:32 2018 @author: myhaspl """ import tensorflow as tf x1 = tf.constant(2.) x2 = [1,2,3] y1=tf.identity(x1,name="my_y1") y2=tf.identity(x2,name="my_y") sess=tf.Session() with sess: print sess.run(y1) print sess.run(y2) 2.0 [1 2 3]
tensorflow-條件循環控制(1)