python神經網路解決手寫識別問題演算法和程式碼
阿新 • • 發佈:2018-12-04
1.演算法
2.程式碼
import numpy # scipy.special for the sigmoid function expit() import scipy.special # library for plotting arrays import matplotlib.pyplot # ensure the plots are inside this notebook, not an external window # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, outputnodes,learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5),(self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5),(self.onodes, self.hnodes)) # learning rate self.lr = learningrate# activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights,recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who += self.lr * numpy.dot((output_errors *final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers # 轉置(transpose) self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs # number of input, hidden and output nodes input_nodes = 784 hidden_nodes = 300 output_nodes = 10 # learning rate is 0.3 learning_rate = 0.1 # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate) # load the mnist training data CSV file into a list training_data_file = open("mnist_dataset/mnist_train.csv", 'r') training_data_list = training_data_file.readlines() training_data_file.close() test_data_file = open("mnist_dataset/mnist_test.csv", 'r') test_data_list = test_data_file.readlines() test_data_file.close() # train the neural network # go through all records in the training data set epochs = 1 for e in range(epochs): for record in training_data_list: # split the record by the ',' commas all_values = record.split(',') # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # create the target output values (all 0.01, except the desires label which is 0.99) targets = numpy.zeros(output_nodes) + 0.01 # all_values[0] is the target label for this record targets[int(all_values[0])] = 0.99 n.train(inputs, targets) pass # import matplotlib.pyplot as plt # all_values = test_data_list[0].split(',') # print(all_values[0]) # # numpy.asfarray()是一個numpy函式, 這個函式將文字字串轉換成實數, 並建立這些數字的陣列 # image_array = numpy.asfarray( all_values[1:]).reshape((28,28)) # # 使用imshow()函式繪出image_array # plt.imshow(image_array, cmap='Greys',interpolation='None') # plt.show() # print(n.query(numpy.asfarray(all_values[1:]))) # scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # print(scaled_input) scorecard = [] #go through all the records in the test data set for record in test_data_list: # split the record by the ',' commas all_values = record.split(',') # correct answer is first value correct_label = int(all_values[0]) print(correct_label, "correct label") # scale and shift the inputs inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01 # query the network outputs = n.query(inputs) # the index of the highest value corresponds to the label label = numpy.argmax(outputs) print(label, "network's answer") # append correct or incorrect to list if (label == correct_label): # network's answer matches correct answer, add 1 to scorecard scorecard.append(1) else: # network's answer doesn't match correct answer, add 0 to scorecard scorecard.append(0) pass pass print(scorecard) scorecard_array = numpy.asarray(scorecard) print ("performance = ", scorecard_array.sum() /scorecard_array.size) import scipy.misc img_array = scipy.misc.imread("mnist_dataset/2828_my_own_2.png",flatten=True) img_data = 255.0 - img_array . reshape( 784 ) image_array= numpy.asfarray(img_data).reshape((28,28)) # 使用imshow()函式繪出image_array matplotlib.pyplot.imshow(image_array, cmap='Greys',interpolation='None') matplotlib.pyplot.show() print(n.query(numpy.asfarray(img_data) / 255.0 * 0.99) + 0.01)
3.資料集