1. 程式人生 > >python神經網路解決手寫識別問題演算法和程式碼

python神經網路解決手寫識別問題演算法和程式碼

1.演算法

2.程式碼

import numpy
# scipy.special for the sigmoid function expit()
import scipy.special
# library for plotting arrays
import matplotlib.pyplot
# ensure the plots are inside this notebook, not an external window
# neural network class definition
class neuralNetwork:
    # initialise the neural network
    def __init__(self, inputnodes, hiddennodes, outputnodes,learningrate):
    # set number of nodes in each input, hidden, output layer
        self.inodes = inputnodes
        self.hnodes = hiddennodes
        self.onodes = outputnodes
    # link weight matrices, wih and who
    # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer
    # w11 w21
    # w12 w22 etc
        self.wih = numpy.random.normal(0.0, pow(self.hnodes, -0.5),(self.hnodes, self.inodes))
        self.who = numpy.random.normal(0.0, pow(self.onodes, -0.5),(self.onodes, self.hnodes))
        # learning rate
        self.lr = learningrate# activation function is the sigmoid function
        self.activation_function = lambda x: scipy.special.expit(x)
        pass
    # train the neural network
    def train(self, inputs_list, targets_list):
    # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        targets = numpy.array(targets_list, ndmin=2).T
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)
        # calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        # output layer error is the (target - actual)
        output_errors = targets - final_outputs
        # hidden layer error is the output_errors, split by weights,recombined at hidden nodes
        hidden_errors = numpy.dot(self.who.T, output_errors)
        # update the weights for the links between the hidden and output layers
        self.who += self.lr * numpy.dot((output_errors *final_outputs
                                         * (1.0 - final_outputs)),
                                        numpy.transpose(hidden_outputs))
        # update the weights for the links between the input and hidden layers
        # 轉置(transpose)
        self.wih += self.lr * numpy.dot((hidden_errors * hidden_outputs
                                         * (1.0 - hidden_outputs)),
                                        numpy.transpose(inputs))
        pass
        # query the neural network
    def query(self, inputs_list):
        # convert inputs list to 2d array
        inputs = numpy.array(inputs_list, ndmin=2).T
        # calculate signals into hidden layer
        hidden_inputs = numpy.dot(self.wih, inputs)
        # calculate the signals emerging from hidden layer
        hidden_outputs = self.activation_function(hidden_inputs)
        # calculate signals into final output layer
        final_inputs = numpy.dot(self.who, hidden_outputs)# calculate the signals emerging from final output layer
        final_outputs = self.activation_function(final_inputs)
        return final_outputs
# number of input, hidden and output nodes
input_nodes = 784
hidden_nodes = 300
output_nodes = 10
# learning rate is 0.3
learning_rate = 0.1
# create instance of neural network
n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
# load the mnist training data CSV file into a list
training_data_file = open("mnist_dataset/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()

test_data_file = open("mnist_dataset/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
# train the neural network
# go through all records in the training data set

epochs = 1
for e in range(epochs):
    for record in training_data_list:
        # split the record by the ',' commas
        all_values = record.split(',')
        # scale and shift the inputs
        inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
        # create the target output values (all 0.01, except the desires label which is 0.99)
        targets = numpy.zeros(output_nodes) + 0.01
        # all_values[0] is the target label for this record
        targets[int(all_values[0])] = 0.99
        n.train(inputs, targets)
        pass

# import matplotlib.pyplot as plt
# all_values = test_data_list[0].split(',')
# print(all_values[0])
# # numpy.asfarray()是一個numpy函式, 這個函式將文字字串轉換成實數, 並建立這些數字的陣列
# image_array = numpy.asfarray( all_values[1:]).reshape((28,28))
# # 使用imshow()函式繪出image_array
# plt.imshow(image_array, cmap='Greys',interpolation='None')
# plt.show()
# print(n.query(numpy.asfarray(all_values[1:])))
# scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# print(scaled_input)

scorecard = []
#go through all the records in the test data set
for record in test_data_list:
    # split the record by the ',' commas
    all_values = record.split(',')
    # correct answer is first value
    correct_label = int(all_values[0])
    print(correct_label, "correct label")
    # scale and shift the inputs
    inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
    # query the network
    outputs = n.query(inputs)
    # the index of the highest value corresponds to the label
    label = numpy.argmax(outputs)
    print(label, "network's answer")
    # append correct or incorrect to list
    if (label == correct_label):
        # network's answer matches correct answer, add 1 to scorecard
        scorecard.append(1)
    else:
    # network's answer doesn't match correct answer, add 0 to scorecard
        scorecard.append(0)
        pass
    pass
print(scorecard)
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() /scorecard_array.size)

import scipy.misc
img_array = scipy.misc.imread("mnist_dataset/2828_my_own_2.png",flatten=True)
img_data = 255.0 - img_array . reshape( 784 )
image_array= numpy.asfarray(img_data).reshape((28,28))
# 使用imshow()函式繪出image_array
matplotlib.pyplot.imshow(image_array, cmap='Greys',interpolation='None')
matplotlib.pyplot.show()
print(n.query(numpy.asfarray(img_data) / 255.0 * 0.99) + 0.01)

3.資料集

https://download.csdn.net/download/albert201605/10340814