1. 程式人生 > >C語言面向物件程式設計:單鏈表實現(5)

C語言面向物件程式設計:單鏈表實現(5)

 前面我們介紹瞭如何在 C 語言中引入面嚮物件語言的一些特性來進行面向物件程式設計,從本篇開始,我們使用前面提到的技巧,陸續實現幾個例子,最後呢,會提供一個基本的 http server 實現(使用 libevent )。在這篇文章裡,我們實現一個通用的資料結構:單鏈表。

    這裡實現的單鏈表,可以儲存任意資料型別,支援增、刪、改、查詢、插入等基本操作。(本文提供的是完整程式碼,可能有些長。)

    下面是標頭檔案:

#ifndef SLIST_H
#define SLIST_H
 
#ifdef __cplusplus
extern "C" {
#endif
 
#define NODE_T(ptr, type) ((type*)ptr)
 
struct slist_node {
    struct slist_node * next;
};
 
typedef void (*list_op_free_node)(struct slist_node *node);
/*
 * return 0 on hit key, else return none zero
 */
typedef int (*list_op_key_hit_test)(struct slist_node *node, void *key);
 
struct single_list {
    /* all the members must not be changed manually by callee */
    struct slist_node * head;
    struct slist_node * tail;
    int size; /* length of the list, do not change it manually*/
 
    /* free method to delete the node
     */
    void (*free_node)(struct slist_node *node);
    /*
     * should be set by callee, used to locate node by key(*_by_key() method)
     * return 0 on hit key, else return none zero
     */
    int (*key_hit_test)(struct slist_node *node, void *key);
 
    struct single_list *(*add)(struct single_list * list, struct slist_node * node);
    struct single_list *(*insert)(struct single_list * list, int pos, struct slist_node *node);
    /* NOTE: the original node at the pos will be freed by free_node */
    struct single_list *(*replace)(struct single_list *list, int pos, struct slist_node *node);
    struct slist_node *(*find_by_key)(struct single_list *, void * key);
    struct slist_node *(*first)(struct single_list* list);
    struct slist_node *(*last)(struct single_list* list);
    struct slist_node *(*at)(struct single_list * list, int pos);
    struct slist_node *(*take_at)(struct single_list * list, int pos);
    struct slist_node *(*take_by_key)(struct single_list * list, void *key);
    struct single_list *(*remove)(struct single_list * list, struct slist_node * node);
    struct single_list *(*remove_at)(struct single_list *list, int pos);
    struct single_list *(*remove_by_key)(struct single_list *list, void *key);
    int (*length)(struct single_list * list);
    void (*clear)(struct single_list * list);
    void (*deletor)(struct single_list *list);
};
 
struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp);
 
#ifdef __cplusplus
}
#endif
 
#endif // SLIST_H

    struct single_list 這個類,遵循我們前面介紹的基本原則,不再一一細說。有幾點需要提一下:
我們定義了 slist_node 作為連結串列節點的基類,使用者自定義的節點,都必須從 slist_node 繼承
為了支援節點( node )的釋放,我們引入一個回撥函式 list_op_free_node ,這個回撥需要在建立連結串列時傳入
為了支援查詢,引入另外一個回撥函式 list_op_key_hit_test 
    好了,下面看實現檔案:

#include "slist.h"
#include <malloc.h>
 
static struct single_list * _add_node(struct single_list *list, struct slist_node *node)
{
 
    if(list->tail)
    {
        list->tail->next = node;
        node->next = 0;
        list->tail = node;
        list->size++;
    }
    else
    {
        list->head = node;
        list->tail = node;
        node->next = 0;
        list->size = 1;
    }
 
    return list;
}
 
static struct single_list * _insert_node(struct single_list * list, int pos, struct slist_node *node)
{
    if(pos < list->size)
    {
        int i = 0;
        struct slist_node * p = list->head;
        struct slist_node * prev = list->head;
        for(; i < pos; i++)
        {
            prev = p;
            p = p->next;
        }
        if(p == list->head)
        {
            /* insert at head */
            node->next = list->head;
            list->head = node;
        }
        else
        {
            prev->next = node;
            node->next = p;
        }
 
        if(node->next == 0) list->tail = node;
        list->size++;
    }
    else
    {
        list->add(list, node);
    }
 
    return list;
}
 
static struct single_list * _replace(struct single_list * list, int pos, struct slist_node *node)
{
    if(pos < list->size)
    {
        int i = 0;
        struct slist_node * p = list->head;
        struct slist_node * prev = list->head;
        for(; i < pos; i++)
        {
            prev = p;
            p = p->next;
        }
        if(p == list->head)
        {
            /* replace at head */
            node->next = list->head->next;
            list->head = node;
        }
        else
        {
            prev->next = node;
            node->next = p->next;
        }
 
        if(node->next == 0) list->tail = node;
 
        if(list->free_node) list->free_node(p);
        else free(p);
    }
 
    return list;
}
 
static struct slist_node * _find_by_key(struct single_list *list, void * key)
{
    if(list->key_hit_test)
    {
        struct slist_node * p = list->head;
        while(p)
        {
            if(list->key_hit_test(p, key) == 0) return p;
            p = p->next;
        }
    }
    return 0;
}
 
static struct slist_node *_first_of(struct single_list* list)
{
    return list->head;
}
 
static struct slist_node *_last_of(struct single_list* list)
{
    return list->tail;
}
 
static struct slist_node *_node_at(struct single_list * list, int pos)
{
    if(pos < list->size)
    {
        int i = 0;
        struct slist_node * p = list->head;
        for(; i < pos; i++)
        {
            p = p->next;
        }
        return p;
    }
 
    return 0;
}
 
static struct slist_node * _take_at(struct single_list * list, int pos)
{
    if(pos < list->size)
    {
        int i = 0;
        struct slist_node * p = list->head;
        struct slist_node * prev = p;
        for(; i < pos ; i++)
        {
            prev = p;
            p = p->next;
        }
        if(p == list->head)
        {
            list->head = p->next;
            if(list->head == 0) list->tail = 0;
        }
        else if(p == list->tail)
        {
            list->tail = prev;
            prev->next = 0;
        }
        else
        {
            prev->next = p->next;
        }
 
        list->size--;
 
        p->next = 0;
        return p;
    }
 
    return 0;
}
 
static struct slist_node * _take_by_key(struct single_list * list, void *key)
{
    if(list->key_hit_test)
    {
        struct slist_node * p = list->head;
        struct slist_node * prev = p;
        while(p)
        {
            if(list->key_hit_test(p, key) == 0) break;
            prev = p;
            p = p->next;
        }
 
        if(p)
        {
            if(p == list->head)
            {
                list->head = p->next;
                if(list->head == 0) list->tail = 0;
            }
            else if(p == list->tail)
            {
                list->tail = prev;
                prev->next = 0;
            }
            else
            {
                prev->next = p->next;
            }
 
            list->size--;
 
            p->next = 0;
            return p;
        }
    }
    return 0;
}
 
static struct single_list *_remove_node(struct single_list * list, struct slist_node * node)
{
    struct slist_node * p = list->head;
    struct slist_node * prev = p;
    while(p)
    {
        if(p == node) break;
        prev = p;
        p = p->next;
    }
 
    if(p)
    {
        if(p == list->head)
        {
            list->head = list->head->next;
            if(list->head == 0) list->tail = 0;
        }
        else if(p == list->tail)
        {
            prev->next = 0;
            list->tail = prev;
        }
        else
        {
            prev->next = p->next;
        }
 
        if(list->free_node) list->free_node(p);
        else free(p);
 
        list->size--;
    }
    return list;
}
 
static struct single_list *_remove_at(struct single_list *list, int pos)
{
    if(pos < list->size)
    {
        int i = 0;
        struct slist_node * p = list->head;
        struct slist_node * prev = p;
        for(; i < pos ; i++)
        {
            prev = p;
            p = p->next;
        }
        if(p == list->head)
        {
            list->head = p->next;
            if(list->head == 0) list->tail = 0;
        }
        else if(p == list->tail)
        {
            list->tail = prev;
            prev->next = 0;
        }
        else
        {
            prev->next = p->next;
        }
 
        if(list->free_node) list->free_node(p);
        else free(p);
 
        list->size--;
    }
 
    return list;
}
 
static struct single_list *_remove_by_key(struct single_list *list, void *key)
{
    if(list->key_hit_test)
    {
        struct slist_node * p = list->head;
        struct slist_node * prev = p;
        while(p)
        {
            if(list->key_hit_test(p, key) == 0) break;
            prev = p;
            p = p->next;
        }
 
        if(p)
        {
            if(p == list->head)
            {
                list->head = list->head->next;
                if(list->head == 0) list->tail = 0;
            }
            else if(p == list->tail)
            {
                prev->next = 0;
                list->tail = prev;
            }
            else
            {
                prev->next = p->next;
            }
 
            if(list->free_node) list->free_node(p);
            else free(p);
 
            list->size--;
        }
    }
 
    return list;
}
 
static int _length_of(struct single_list * list)
{
    return list->size;
}
 
static void _clear_list(struct single_list * list)
{
    struct slist_node * p = list->head;
    struct slist_node * p2;
    while(p)
    {
        p2 = p;
        p = p->next;
 
        if(list->free_node) list->free_node(p2);
        else free(p2);
    }
 
    list->head = 0;
    list->tail = 0;
    list->size = 0;
}
 
static void _delete_single_list(struct single_list *list)
{
    list->clear(list);
    free(list);
}
 
struct single_list * new_single_list(list_op_free_node op_free, list_op_key_hit_test op_cmp)
{
    struct single_list *list = (struct single_list *)malloc(sizeof(struct single_list));
    list->head = 0;
    list->tail = 0;
    list->size = 0;
    list->free_node = op_free;
    list->key_hit_test = op_cmp;
 
    list->add = _add_node;
    list->insert = _insert_node;
    list->replace = _replace;
    list->find_by_key = _find_by_key;
    list->first = _first_of;
    list->last = _last_of;
    list->at = _node_at;
    list->take_at = _take_at;
    list->take_by_key = _take_by_key;
    list->remove = _remove_node;
    list->remove_at = _remove_at;
    list->remove_by_key = _remove_by_key;
    list->length = _length_of;
    list->clear = _clear_list;
    list->deletor = _delete_single_list;
 
    return list;
}

    上面的程式碼就不一一細說了,下面是測試程式碼:
/* call 1 or N arguments function of struct */
#define ST_CALL(THIS,func,args...) ((THIS)->func(THIS,args))
 
/* call none-arguments function of struct */
#define ST_CALL_0(THIS,func) ((THIS)->func(THIS))
 
struct int_node {
    struct slist_node node;
    int id;
};
 
struct string_node {
    struct slist_node node;
    char name[16];
};
 
 
static int int_free_flag = 0;
static void _int_child_free(struct slist_node *node)
{
    free(node);
    if(!int_free_flag)
    {
        int_free_flag = 1;
        printf("int node free\n");
    }
}
 
static int _int_slist_hittest(struct slist_node * node, void *key)
{
    struct int_node * inode = NODE_T(node, struct int_node);
    int ikey = (int)key;
    return (inode->id == ikey ? 0 : 1);
}
 
static int string_free_flag = 0;
static void _string_child_free(struct slist_node *node)
{
    free(node);
    if(!string_free_flag)
    {
        string_free_flag = 1;
        printf("string node free\n");
    }
}
 
static int _string_slist_hittest(struct slist_node * node, void *key)
{
    struct string_node * sn = (struct string_node*)node;
    return strcmp(sn->name, (char*)key);
}
 
void int_slist_test()
{
    struct single_list * list = new_single_list(_int_child_free, _int_slist_hittest);
    struct int_node * node = 0;
    struct slist_node * bn = 0;
    int i = 0;
 
    printf("create list && nodes:\n");
    for(; i < 100; i++)
    {
        node = (struct int_node*)malloc(sizeof(struct int_node));
        node->id = i;
        if(i%10)
        {
            list->add(list, node);
        }
        else
        {
            list->insert(list, 1, node);
        }
    }
    printf("create 100 nodes end\n----\n");
    printf("first is : %d, last is: %d\n----\n",
           NODE_T( ST_CALL_0(list, first), struct int_node )->id,
           NODE_T( ST_CALL_0(list, last ), struct int_node )->id);
 
    assert(list->size == 100);
 
    printf("list traverse:\n");
    for(i = 0; i < 100; i++)
    {
        if(i%10 == 0) printf("\n");
        bn = list->at(list, i);
        node = NODE_T(bn, struct int_node);
        printf(" %d", node->id);
    }
    printf("\n-----\n");
 
    printf("find by key test, key=42:\n");
    bn = list->find_by_key(list, (void*)42);
    assert(bn != 0);
    node = NODE_T(bn, struct int_node);
    printf("find node(key=42), %d\n------\n", node->id);
 
    printf("remove node test, remove the 10th node:\n");
    bn = list->at(list, 10);
    node = NODE_T(bn, struct int_node);
    printf("  node 10 is: %d\n", node->id);
    printf("  now remove node 10\n");
    list->remove_at(list, 10);
    printf(" node 10 was removed, check node 10 again:\n");
    bn = list->at(list, 10);
    node = NODE_T(bn, struct int_node);
    printf("  now node 10 is: %d\n------\n", node->id);
 
    printf("replace test, replace node 12 with id 1200:\n");
    bn = list->at(list, 12);
    node = NODE_T(bn, struct int_node);
    printf("  now node 12 is : %d\n", node->id);
    node = (struct int_node*)malloc(sizeof(struct int_node));
    node->id = 1200;
    list->replace(list, 12, node);
    bn = list->at(list, 12);
    node = NODE_T(bn, struct int_node);
    printf("  replaced, now node 12 is : %d\n----\n", node->id);
 
    printf("test remove:\n");
    ST_CALL(list, remove, bn);
    bn = ST_CALL(list, find_by_key, (void*)1200);
    assert(bn == 0);
    printf("test remove ok\n----\n");
    printf("test remove_by_key(90):\n");
    ST_CALL(list, remove_by_key, (void*)90);
    bn = ST_CALL(list, find_by_key, (void*)90);
    assert(bn == 0);
    printf("test remove_by_key(90) end\n----\n");
    printf("test take_at(80):\n");
    bn = ST_CALL(list, take_at, 80);
    printf("  node 80 is: %d\n", NODE_T(bn, struct int_node)->id);
    free(bn);
    printf("test take_at(80) end\n");
 
    int_free_flag = 0;
    printf("delete list && nodes:\n");
    list->deletor(list);
    printf("delete list && nodes end\n");
    printf("\n test add/insert/remove/delete/find_by_key/replace...\n");
}
 
void string_slist_test()
{
    struct single_list * list = new_single_list(_string_child_free, _string_slist_hittest);
}
 
void slist_test()
{
    int_slist_test();
    string_slist_test();
}

    測試程式碼裡主要演示了:
自定義連結串列節點型別
定義釋放回調
定義用於查詢的 hit test 回撥
如何建立連結串列
如何使用( add 、remove 、 take 、find 、 insert 等)
    相信到這裡,單鏈表的使用已經不成問題了。

    以單鏈表為基礎,可以進一步實現很多資料結構,比如樹(兄弟孩子表示法),比如 key-value 連結串列等等。接下來根據例子的需要,會擇機進行展示。
--------------------- 
作者:foruok 
來源:CSDN 
原文:https://blog.csdn.net/foruok/article/details/18594177 
版權宣告:本文為博主原創文章,轉載請附上博文連結!