迴歸演算法的應用——信用卡欺詐檢測案例
阿新 • • 發佈:2018-12-07
面對非平衡資料集時,有兩種解決方案:過取樣和下采樣。
下采樣: 讓數量多的樣本減少到和數量少的樣本數量一樣多。
過取樣:生成數量少的樣本,以平衡資料
import numpy as np import pandas as pd import matplotlib.pyplot as plt from IPython import get_ipython get_ipython().run_line_magic('matplotlib', 'inline') data=pd.read_csv("creditcard.csv") data.head() #可以看到正負樣本分佈極不平衡,異常樣本很少 count_classes=pd.value_counts(data["Class"],sort=True).sort_index() count_classes.plot(kind='bar') plt.title("Fraud class histogram") plt.xlabel("Class") plt.ylabel("Frequency") #sklearn庫提供機器學習操作和預處理操作 #fit_transform將Amount特徵變換為一列資料 from sklearn.preprocessing import StandardScaler data["normAmount"]=StandardScaler().fit_transform(data["Amount"].reshape(-1,1)) #刪除Time和Amount兩列 data=data.drop(["Time","Amount"],axis=1) #下采樣 X = data.ix[:, data.columns != 'Class'] y = data.ix[:, data.columns == 'Class'] #統計異常樣本數目和索引 number_records_fraud = len(data[data.Class == 1]) fraud_indices = np.array(data[data.Class == 1].index) normal_indices = data[data.Class == 0].index #random模組,隨機選擇和異常事件一樣多的正常資料 random_normal_indices = np.random.choice(normal_indices, number_records_fraud, replace = False) random_normal_indices = np.array(random_normal_indices) #合併異常和正常的資料集 under_sample_indices = np.concatenate([fraud_indices,random_normal_indices]) under_sample_data = data.iloc[under_sample_indices,:] X_undersample = under_sample_data.ix[:, under_sample_data.columns != 'Class'] y_undersample = under_sample_data.ix[:, under_sample_data.columns == 'Class'] print("Percentage of normal transactions: ", len(under_sample_data[under_sample_data.Class == 0])/len(under_sample_data)) print("Percentage of fraud transactions: ", len(under_sample_data[under_sample_data.Class == 1])/len(under_sample_data)) print("Total number of transactions in resampled data: ", len(under_sample_data))
下采樣導致資料量變少。雖然召回率能達到要求,但是將正常類錯分為異常類的機率很高。如下圖混淆矩陣所示,誤分的有9895個,這就是下采樣的劣勢。
交叉驗證:
切分資料為兩部分。80%訓練,20%測試。平均切分訓練集為三份1、2、3,分別用1、2來訓練,3來驗證;用1、3訓練,2來驗證;用2、3訓練、1來驗證。利用交叉驗證找到合適的模型引數。
本案例採用邏輯斯特迴歸模型,在skleaarn庫中有。
#Recall=TP/(TP+FN) #cross_val_score表示交叉驗證的結果 #混淆矩陣 confusion_matrix from sklearn.linear_model import LogisticRegression from sklearn.cross_validation import KFold, cross_val_score from sklearn.metrics import confusion_matrix,recall_score,classification_report #5折交叉驗證 def printing_Kfold_scores(x_train_data,y_train_data): fold=KFold(len(y_train_data),5,shuffle=False) #C就是正則化懲罰項中的λ c_param_range=[0.01,0.1,1,10,100] results_table = pd.DataFrame(index = range(len(c_param_range),2), columns = ['C_parameter','Mean recall score']) results_table['C_parameter'] = c_param_range j=0 for c_param in c_param_range: print('-----------------') print('C parameter:',c_param) print('-----------------') print('') recall_accs=[] #enumerate列舉型別,代表從1開始,在fold中迭代 for iteration,indices in enumerate(fold,start=1): lr=LogisticRegression(C=c_param,penalty='l1')#選擇了L1懲罰,L1、L2均可以 lr.fit(x_train_data.iloc[indices[0],:],y_train_data.iloc[indices[0],:].values.ravel()) y_pred_undersample=lr.predict(x_train_data.iloc[indices[1],:].values) recall_acc=recall_score(y_train_data.iloc[indices[1],:].values,y_pred_undersample) recall_accs.append(recall_acc) print('Iteration ', iteration,': recall score = ', recall_acc) # The mean value of those recall scores is the metric we want to save and get hold of. results_table.ix[j,'Mean recall score'] = np.mean(recall_accs) j += 1 print('') print('Mean recall score ', np.mean(recall_accs)) print('') best_c = results_table.loc[results_table['Mean recall score'].idxmax()]['C_parameter'] # Finally, we can check which C parameter is the best amongst the chosen. print('*********************************************************************************') print('Best model to choose from cross validation is with C parameter = ', best_c) print('*********************************************************************************') return best_c best_c = printing_Kfold_scores(X_train_undersample,y_train_undersample)
##過取樣SMOTE策略 import pandas as pd from imblearn.over_sampling import SMOTE from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix from sklearn.model_selection import train_test_split credit_cards=pd.read_csv('creditcard.csv') columns=credit_cards.columns # The labels are in the last column ('Class'). Simply remove it to obtain features columns features_columns=columns.delete(len(columns)-1) features=credit_cards[features_columns] labels=credit_cards['Class'] features_train, features_test, labels_train, labels_test = train_test_split(features, labels, test_size=0.2, random_state=0) #只對訓練進行樣本生成,另外的測試集不需要生成 oversampler=SMOTE(random_state=0) os_features,os_labels=oversampler.fit_sample(features_train,labels_train) os_features = pd.DataFrame(os_features) os_labels = pd.DataFrame(os_labels) best_c = printing_Kfold_scores(os_features,os_labels) lr = LogisticRegression(C = best_c, penalty = 'l1') lr.fit(os_features,os_labels.values.ravel()) y_pred = lr.predict(features_test.values) # Compute confusion matrix cnf_matrix = confusion_matrix(labels_test,y_pred) np.set_printoptions(precision=2) print("Recall metric in the testing dataset: ", cnf_matrix[1,1]/(cnf_matrix[1,0]+cnf_matrix[1,1])) # Plot non-normalized confusion matrix class_names = [0,1] plt.figure() plot_confusion_matrix(cnf_matrix , classes=class_names , title='Confusion matrix') plt.show()