17 SVM - 程式碼案例四 - 不同SVM懲罰引數C值不同效果比較
阿新 • • 發佈:2018-12-07
SVM的章節已經講完,具體內容請參考:《01 SVM - 大綱》
《14 SVM - 程式碼案例一 - 鳶尾花資料SVM分類》
《15 SVM - 程式碼案例二 - 鳶尾花資料不同分類器效果比較》
《16 SVM - 程式碼案例三 - 不同SVM核函式效果比較》
常規操作:
1、標頭檔案引入SVM相關的包
2、防止中文亂碼
3、讀取資料
4、資料分割訓練集和測試集 6:4
import time import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ## 設定屬性防止中文亂碼 mpl.rcParams['font.sans-serif'] = [u'SimHei'] mpl.rcParams['axes.unicode_minus'] = False ## 讀取資料 # 'sepal length', 'sepal width', 'petal length', 'petal width' iris_feature = u'花萼長度', u'花萼寬度', u'花瓣長度', u'花瓣寬度' path = './datas/iris.data' # 資料檔案路徑 data = pd.read_csv(path, header=None) x, y = data[list(range(4))], data[4] y = pd.Categorical(y).codes x = x[[0, 1]] ## 資料分割 x_train, x_test, y_train, y_test = train_test_split(x, y, random_state=28, train_size=0.6)
資料SVM分類器構建:
svm1 = SVC(C=0.1, kernel='rbf')
svm2 = SVC(C=1, kernel='rbf')
svm3 = SVC(C=10, kernel='rbf')
svm4 = SVC(C=100, kernel='rbf')
svm5 = SVC(C=500, kernel='rbf')
svm6 = SVC(C=100000, kernel='rbf')
C越大,泛化能力越差,會出現過擬合的問題
C越小,泛化能力越好,但是容易出現欠擬合的問題
模型訓練:
t0=time.time() svm1.fit(x_train, y_train) t1=time.time() svm2.fit(x_train, y_train) t2=time.time() svm3.fit(x_train, y_train) t3=time.time() svm4.fit(x_train, y_train) t4=time.time() svm5.fit(x_train, y_train) t5=time.time() svm6.fit(x_train, y_train) t6=time.time()
效果評估:
svm1_score1 = accuracy_score(y_train, svm1.predict(x_train)) svm1_score2 = accuracy_score(y_test, svm1.predict(x_test)) svm2_score1 = accuracy_score(y_train, svm2.predict(x_train)) svm2_score2 = accuracy_score(y_test, svm2.predict(x_test)) svm3_score1 = accuracy_score(y_train, svm3.predict(x_train)) svm3_score2 = accuracy_score(y_test, svm3.predict(x_test)) svm4_score1 = accuracy_score(y_train, svm4.predict(x_train)) svm4_score2 = accuracy_score(y_test, svm4.predict(x_test)) svm5_score1 = accuracy_score(y_train, svm5.predict(x_train)) svm5_score2 = accuracy_score(y_test, svm5.predict(x_test)) svm6_score1 = accuracy_score(y_train, svm6.predict(x_train)) svm6_score2 = accuracy_score(y_test, svm6.predict(x_test))
畫圖 - 鳶尾花資料SVM分類器C值不同效果比較:
x_tmp = [0,1,2,3, 4, 5]
t_score = [t1 - t0, t2-t1, t3-t2, t4-t3, t5-t4, t6-t5]
y_score1 = [svm1_score1, svm2_score1, svm3_score1, svm4_score1, svm5_score1, svm6_score1]
y_score2 = [svm1_score2, svm2_score2, svm3_score2, svm4_score2, svm5_score2, svm6_score2]
plt.figure(facecolor='w', figsize=(12,6))
1、模型預測準確率:
plt.subplot(121)
plt.plot(x_tmp, y_score1, 'r-', lw=2, label=u'訓練集準確率')
plt.plot(x_tmp, y_score2, 'g-', lw=2, label=u'測試集準確率')
plt.xlim(-0.3, 3.3)
plt.ylim(np.min((np.min(y_score1), np.min(y_score2)))*0.9,
np.max((np.max(y_score1), np.max(y_score2)))*1.1)
plt.legend(loc = 'lower left')
plt.title(u'模型預測準確率', fontsize=13)
plt.xticks(x_tmp, [u'C=0.1', u'C=1', u'C=10', u'C=100', u'C=500', u'C=10000'], rotation=0)
plt.grid(b=True)
2、模型訓練耗時:
plt.subplot(122)
plt.plot(x_tmp, t_score, 'b-', lw=2, label=u'模型訓練時間')
plt.title(u'模型訓練耗時', fontsize=13)
plt.xticks(x_tmp, [u'C=0.1', u'C=1', u'C=10', u'C=100', u'C=500', u'C=10000'], rotation=0)
plt.grid(b=True)
plt.suptitle(u'鳶尾花資料SVM分類器C值不同效果比較', fontsize=16)
plt.show()
預測結果畫圖:
畫圖比較 - 鳶尾花資料SVM分類器不同C引數效果比較
N = 500
x1_min, x2_min = x.min()
x1_max, x2_max = x.max()
t1 = np.linspace(x1_min, x1_max, N)
t2 = np.linspace(x2_min, x2_max, N)
x1, x2 = np.meshgrid(t1, t2) # 生成網格取樣點
grid_show = np.dstack((x1.flat, x2.flat))[0] # 測試點
獲取各個不同演算法的測試值:
svm1_grid_hat = svm1.predict(grid_show)
svm1_grid_hat = svm1_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
svm2_grid_hat = svm2.predict(grid_show)
svm2_grid_hat = svm2_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
svm3_grid_hat = svm3.predict(grid_show)
svm3_grid_hat = svm3_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
svm4_grid_hat = svm4.predict(grid_show)
svm4_grid_hat = svm4_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
svm5_grid_hat = svm5.predict(grid_show)
svm5_grid_hat = svm5_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
svm6_grid_hat = svm6.predict(grid_show)
svm6_grid_hat = svm6_grid_hat.reshape(x1.shape) # 使之與輸入的形狀相同
畫圖:
cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
cm_dark = mpl.colors.ListedColormap(['g', 'r', 'b'])
plt.figure(facecolor='w', figsize=(14,7))
1、C=0.1
plt.subplot(231)
## 區域圖
plt.pcolormesh(x1, x2, svm1_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=0.1', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
2、C=1
plt.subplot(232)
## 區域圖
plt.pcolormesh(x1, x2, svm2_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=1', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
3、C=10
plt.subplot(233)
## 區域圖
plt.pcolormesh(x1, x2, svm3_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=10', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
4、C=100
plt.subplot(234)
## 區域圖
plt.pcolormesh(x1, x2, svm4_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=100', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
5、C=500
plt.subplot(235)
## 區域圖
plt.pcolormesh(x1, x2, svm5_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=500', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
6、C=10000
plt.subplot(236)
## 區域圖
plt.pcolormesh(x1, x2, svm6_grid_hat, cmap=cm_light)
## 所以樣本點
plt.scatter(x[0], x[1], c=y, edgecolors='k', s=50, cmap=cm_dark) # 樣本
## 測試資料集
plt.scatter(x_test[0], x_test[1], s=120, facecolors='none', zorder=10) # 圈中測試集樣本
## lable列表
plt.xlabel(iris_feature[0], fontsize=13)
plt.ylabel(iris_feature[1], fontsize=13)
plt.xlim(x1_min, x1_max)
plt.ylim(x2_min, x2_max)
plt.title(u'C=10000', fontsize=15)
plt.grid(b=True, ls=':')
plt.tight_layout(pad=1.5)
plt.suptitle(u'鳶尾花資料SVM分類器不同C引數效果比較', fontsize=16)
plt.show()
結論:
C越大,泛化能力越差,會出現過擬合的問題
C越小,泛化能力越好,但是容易出現欠擬合的問題