hadoop入門之海量Web日誌分析 用Hadoop提取KPI統計指標
轉載自:
http://blog.fens.me/hadoop-mapreduce-log-kpi/
今天學習了這一篇部落格,寫得十分好,照著這篇部落格敲了一遍。
發現幾個問題,
一是這篇部落格中採用的hadoop版本過低,如果在hadoop2.x上面跑的話,可能會出現結果檔案沒有寫入任何資料,為了解決這個問題,我試著去參照官網http://hadoop.apache.org/docs/stable/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html的API進行操作,發現官網裡講得十分詳細,只要有一點英文基礎的同行都可以看得懂,直白簡單。hadoop2.x相比較hadoop1.x而言編寫Mapper類,可以直接繼承import org.apache.hadoop.mapreduce.Mapper;無需再實現Mapper介面了,其中關於map方法的寫法也變了改成如下:
public void map(Object key, Text value, Context context) throws IOException, InterruptedException { // TODO Auto-generated method stub KPI kpi = KPI.filterPVS(value.toString()); System.out.println(kpi); if (kpi.isValid()) { word.set(kpi.getIp()); context.write(word, one); } }
hadoop1.x的寫法如下:
@Override public void map(Object key, Text value, OutputCollector output, Reporter reporter) throws IOException { KPI kpi = KPI.filterPVs(value.toString()); if (kpi.isValid()) { word.set(kpi.getRequest()); output.collect(word, one); } }
hadoop2.x的寫法就必須改變了,相應的Reducer中的reduce方法隨之改變。一開始沒有發現文中的github網址去百度了一下費了很大勁找到了一個150多M的檔案,需要自取:
連結: https://pan.baidu.com/s/1hz5dTX69Hc_l9Aj-axvfqw 提取碼: ssys 複製這段內容後開啟百度網盤手機App,操作更方便哦,當然這個日誌檔案內容與部落格的不一致,少了兩個屬性,請自行對照程式碼修改。
二、在hadoop2.x上面執行,在main方法裡配置執行引數我這次使用的hadoop2.9.2這個版本的,需要用到winuitil.exe和hadoop.dll這兩個工具。已經上傳到百度網盤上面,地址如下,連結: https://pan.baidu.com/s/1RTSeGjV2VwWxRAvsUMkkrA 提取碼: dkxt ,有三個檔案分別是hadoop.2.9.2,eclipse外掛,以及winutil,需要把hadoo2.6x裡面的檔案全部複製到hadoop.2.9.2/bin資料夾下,其中hadoop2.6.x中的haoop.dll需要複製到c:/Windows/System32目錄下。關閉所有應用重啟計算機,在main方法中設定如下系統屬性:
System.setProperty("HADOOP_HOME", "E:\\hadoop\\hadoop2.6"); System.setProperty("hadoop.home.dir", "E:\\hadoop\\hadoop-2.9.2"); System.setProperty("HADOOP_USER_NAME", "hadoop");
設定好以後執行會報錯:Acess$0之類的錯誤:遇到這種情況,在專案src下新建NativeIO.java檔案,修改如下:
/** * Licensed to the Apache Software Foundation (ASF) under one * or more contributor license agreements. See the NOTICE file * distributed with this work for additional information * regarding copyright ownership. The ASF licenses this file * to you under the Apache License, Version 2.0 (the * "License"); you may not use this file except in compliance * with the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package org.apache.hadoop.io.nativeio; import java.io.File; import java.io.FileDescriptor; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.RandomAccessFile; import java.lang.reflect.Field; import java.nio.ByteBuffer; import java.nio.MappedByteBuffer; import java.nio.channels.FileChannel; import java.util.Map; import java.util.concurrent.ConcurrentHashMap; import org.apache.hadoop.classification.InterfaceAudience; import org.apache.hadoop.classification.InterfaceStability; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.CommonConfigurationKeys; import org.apache.hadoop.fs.HardLink; import org.apache.hadoop.io.IOUtils; import org.apache.hadoop.io.SecureIOUtils.AlreadyExistsException; import org.apache.hadoop.util.NativeCodeLoader; import org.apache.hadoop.util.Shell; import org.apache.hadoop.util.PerformanceAdvisory; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import sun.misc.Unsafe; import com.google.common.annotations.VisibleForTesting; /** * JNI wrappers for various native IO-related calls not available in Java. * These functions should generally be used alongside a fallback to another * more portable mechanism. */ @InterfaceAudience.Private @InterfaceStability.Unstable public class NativeIO { public static class POSIX { // Flags for open() call from bits/fcntl.h - Set by JNI public static int O_RDONLY = -1; public static int O_WRONLY = -1; public static int O_RDWR = -1; public static int O_CREAT = -1; public static int O_EXCL = -1; public static int O_NOCTTY = -1; public static int O_TRUNC = -1; public static int O_APPEND = -1; public static int O_NONBLOCK = -1; public static int O_SYNC = -1; // Flags for posix_fadvise() from bits/fcntl.h - Set by JNI /* No further special treatment. */ public static int POSIX_FADV_NORMAL = -1; /* Expect random page references. */ public static int POSIX_FADV_RANDOM = -1; /* Expect sequential page references. */ public static int POSIX_FADV_SEQUENTIAL = -1; /* Will need these pages. */ public static int POSIX_FADV_WILLNEED = -1; /* Don't need these pages. */ public static int POSIX_FADV_DONTNEED = -1; /* Data will be accessed once. */ public static int POSIX_FADV_NOREUSE = -1; // Updated by JNI when supported by glibc. Leave defaults in case kernel // supports sync_file_range, but glibc does not. /* Wait upon writeout of all pages in the range before performing the write. */ public static int SYNC_FILE_RANGE_WAIT_BEFORE = 1; /* Initiate writeout of all those dirty pages in the range which are not presently under writeback. */ public static int SYNC_FILE_RANGE_WRITE = 2; /* Wait upon writeout of all pages in the range after performing the write. */ public static int SYNC_FILE_RANGE_WAIT_AFTER = 4; private static final Logger LOG = LoggerFactory.getLogger(NativeIO.class); // Set to true via JNI if possible public static boolean fadvisePossible = false; private static boolean nativeLoaded = false; private static boolean syncFileRangePossible = true; static final String WORKAROUND_NON_THREADSAFE_CALLS_KEY = "hadoop.workaround.non.threadsafe.getpwuid"; static final boolean WORKAROUND_NON_THREADSAFE_CALLS_DEFAULT = true; private static long cacheTimeout = -1; private static CacheManipulator cacheManipulator = new CacheManipulator(); public static CacheManipulator getCacheManipulator() { return cacheManipulator; } public static void setCacheManipulator(CacheManipulator cacheManipulator) { POSIX.cacheManipulator = cacheManipulator; } /** * Used to manipulate the operating system cache. */ @VisibleForTesting public static class CacheManipulator { public void mlock(String identifier, ByteBuffer buffer, long len) throws IOException { POSIX.mlock(buffer, len); } public long getMemlockLimit() { return NativeIO.getMemlockLimit(); } public long getOperatingSystemPageSize() { return NativeIO.getOperatingSystemPageSize(); } public void posixFadviseIfPossible(String identifier, FileDescriptor fd, long offset, long len, int flags) throws NativeIOException { NativeIO.POSIX.posixFadviseIfPossible(identifier, fd, offset, len, flags); } public boolean verifyCanMlock() { return NativeIO.isAvailable(); } } /** * A CacheManipulator used for testing which does not actually call mlock. * This allows many tests to be run even when the operating system does not * allow mlock, or only allows limited mlocking. */ @VisibleForTesting public static class NoMlockCacheManipulator extends CacheManipulator { public void mlock(String identifier, ByteBuffer buffer, long len) throws IOException { LOG.info("mlocking " + identifier); } public long getMemlockLimit() { return 1125899906842624L; } public long getOperatingSystemPageSize() { return 4096; } public boolean verifyCanMlock() { return true; } } static { if (NativeCodeLoader.isNativeCodeLoaded()) { try { Configuration conf = new Configuration(); workaroundNonThreadSafePasswdCalls = conf.getBoolean( WORKAROUND_NON_THREADSAFE_CALLS_KEY, WORKAROUND_NON_THREADSAFE_CALLS_DEFAULT); initNative(); nativeLoaded = true; cacheTimeout = conf.getLong( CommonConfigurationKeys.HADOOP_SECURITY_UID_NAME_CACHE_TIMEOUT_KEY, CommonConfigurationKeys.HADOOP_SECURITY_UID_NAME_CACHE_TIMEOUT_DEFAULT) * 1000; LOG.debug("Initialized cache for IDs to User/Group mapping with a " + " cache timeout of " + cacheTimeout/1000 + " seconds."); } catch (Throwable t) { // This can happen if the user has an older version of libhadoop.so // installed - in this case we can continue without native IO // after warning PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t); } } } /** * Return true if the JNI-based native IO extensions are available. */ public static boolean isAvailable() { return NativeCodeLoader.isNativeCodeLoaded() && nativeLoaded; } private static void assertCodeLoaded() throws IOException { if (!isAvailable()) { throw new IOException("NativeIO was not loaded"); } } /** Wrapper around open(2) */ public static native FileDescriptor open(String path, int flags, int mode) throws IOException; /** Wrapper around fstat(2) */ private static native Stat fstat(FileDescriptor fd) throws IOException; /** Native chmod implementation. On UNIX, it is a wrapper around chmod(2) */ private static native void chmodImpl(String path, int mode) throws IOException; public static void chmod(String path, int mode) throws IOException { if (!Shell.WINDOWS) { chmodImpl(path, mode); } else { try { chmodImpl(path, mode); } catch (NativeIOException nioe) { if (nioe.getErrorCode() == 3) { throw new NativeIOException("No such file or directory", Errno.ENOENT); } else { LOG.warn(String.format("NativeIO.chmod error (%d): %s", nioe.getErrorCode(), nioe.getMessage())); throw new NativeIOException("Unknown error", Errno.UNKNOWN); } } } } /** Wrapper around posix_fadvise(2) */ static native void posix_fadvise( FileDescriptor fd, long offset, long len, int flags) throws NativeIOException; /** Wrapper around sync_file_range(2) */ static native void sync_file_range( FileDescriptor fd, long offset, long nbytes, int flags) throws NativeIOException; /** * Call posix_fadvise on the given file descriptor. See the manpage * for this syscall for more information. On systems where this * call is not available, does nothing. * * @throws NativeIOException if there is an error with the syscall */ static void posixFadviseIfPossible(String identifier, FileDescriptor fd, long offset, long len, int flags) throws NativeIOException { if (nativeLoaded && fadvisePossible) { try { posix_fadvise(fd, offset, len, flags); } catch (UnsatisfiedLinkError ule) { fadvisePossible = false; } } } /** * Call sync_file_range on the given file descriptor. See the manpage * for this syscall for more information. On systems where this * call is not available, does nothing. * * @throws NativeIOException if there is an error with the syscall */ public static void syncFileRangeIfPossible( FileDescriptor fd, long offset, long nbytes, int flags) throws NativeIOException { if (nativeLoaded && syncFileRangePossible) { try { sync_file_range(fd, offset, nbytes, flags); } catch (UnsupportedOperationException uoe) { syncFileRangePossible = false; } catch (UnsatisfiedLinkError ule) { syncFileRangePossible = false; } } } static native void mlock_native( ByteBuffer buffer, long len) throws NativeIOException; /** * Locks the provided direct ByteBuffer into memory, preventing it from * swapping out. After a buffer is locked, future accesses will not incur * a page fault. * * See the mlock(2) man page for more information. * * @throws NativeIOException */ static void mlock(ByteBuffer buffer, long len) throws IOException { assertCodeLoaded(); if (!buffer.isDirect()) { throw new IOException("Cannot mlock a non-direct ByteBuffer"); } mlock_native(buffer, len); } /** * Unmaps the block from memory. See munmap(2). * * There isn't any portable way to unmap a memory region in Java. * So we use the sun.nio method here. * Note that unmapping a memory region could cause crashes if code * continues to reference the unmapped code. However, if we don't * manually unmap the memory, we are dependent on the finalizer to * do it, and we have no idea when the finalizer will run. * * @param buffer The buffer to unmap. */ public static void munmap(MappedByteBuffer buffer) { if (buffer instanceof sun.nio.ch.DirectBuffer) { sun.misc.Cleaner cleaner = ((sun.nio.ch.DirectBuffer)buffer).cleaner(); cleaner.clean(); } } /** Linux only methods used for getOwner() implementation */ private static native long getUIDforFDOwnerforOwner(FileDescriptor fd) throws IOException; private static native String getUserName(long uid) throws IOException; /** * Result type of the fstat call */ public static class Stat { private int ownerId, groupId; private String owner, group; private int mode; // Mode constants - Set by JNI public static int S_IFMT = -1; /* type of file */ public static int S_IFIFO = -1; /* named pipe (fifo) */ public static int S_IFCHR = -1; /* character special */ public static int S_IFDIR = -1; /* directory */ public static int S_IFBLK = -1; /* block special */ public static int S_IFREG = -1; /* regular */ public static int S_IFLNK = -1; /* symbolic link */ public static int S_IFSOCK = -1; /* socket */ public static int S_ISUID = -1; /* set user id on execution */ public static int S_ISGID = -1; /* set group id on execution */ public static int S_ISVTX = -1; /* save swapped text even after use */ public static int S_IRUSR = -1; /* read permission, owner */ public static int S_IWUSR = -1; /* write permission, owner */ public static int S_IXUSR = -1; /* execute/search permission, owner */ Stat(int ownerId, int groupId, int mode) { this.ownerId = ownerId; this.groupId = groupId; this.mode = mode; } Stat(String owner, String group, int mode) { if (!Shell.WINDOWS) { this.owner = owner; } else { this.owner = stripDomain(owner); } if (!Shell.WINDOWS) { this.group = group; } else { this.group = stripDomain(group); } this.mode = mode; } @Override public String toString() { return "Stat(owner='" + owner + "', group='" + group + "'" + ", mode=" + mode + ")"; } public String getOwner() { return owner; } public String getGroup() { return group; } public int getMode() { return mode; } } /** * Returns the file stat for a file descriptor. * * @param fd file descriptor. * @return the file descriptor file stat. * @throws IOException thrown if there was an IO error while obtaining the file stat. */ public static Stat getFstat(FileDescriptor fd) throws IOException { Stat stat = null; if (!Shell.WINDOWS) { stat = fstat(fd); stat.owner = getName(IdCache.USER, stat.ownerId); stat.group = getName(IdCache.GROUP, stat.groupId); } else { try { stat = fstat(fd); } catch (NativeIOException nioe) { if (nioe.getErrorCode() == 6) { throw new NativeIOException("The handle is invalid.", Errno.EBADF); } else { LOG.warn(String.format("NativeIO.getFstat error (%d): %s", nioe.getErrorCode(), nioe.getMessage())); throw new NativeIOException("Unknown error", Errno.UNKNOWN); } } } return stat; } private static String getName(IdCache domain, int id) throws IOException { Map<Integer, CachedName> idNameCache = (domain == IdCache.USER) ? USER_ID_NAME_CACHE : GROUP_ID_NAME_CACHE; String name; CachedName cachedName = idNameCache.get(id); long now = System.currentTimeMillis(); if (cachedName != null && (cachedName.timestamp + cacheTimeout) > now) { name = cachedName.name; } else { name = (domain == IdCache.USER) ? getUserName(id) : getGroupName(id); if (LOG.isDebugEnabled()) { String type = (domain == IdCache.USER) ? "UserName" : "GroupName"; LOG.debug("Got " + type + " " + name + " for ID " + id + " from the native implementation"); } cachedName = new CachedName(name, now); idNameCache.put(id, cachedName); } return name; } static native String getUserName(int uid) throws IOException; static native String getGroupName(int uid) throws IOException; private static class CachedName { final long timestamp; final String name; public CachedName(String name, long timestamp) { this.name = name; this.timestamp = timestamp; } } private static final Map<Integer, CachedName> USER_ID_NAME_CACHE = new ConcurrentHashMap<Integer, CachedName>(); private static final Map<Integer, CachedName> GROUP_ID_NAME_CACHE = new ConcurrentHashMap<Integer, CachedName>(); private enum IdCache { USER, GROUP } public final static int MMAP_PROT_READ = 0x1; public final static int MMAP_PROT_WRITE = 0x2; public final static int MMAP_PROT_EXEC = 0x4; public static native long mmap(FileDescriptor fd, int prot, boolean shared, long length) throws IOException; public static native void munmap(long addr, long length) throws IOException; } private static boolean workaroundNonThreadSafePasswdCalls = false; public static class Windows { // Flags for CreateFile() call on Windows public static final long GENERIC_READ = 0x80000000L; public static final long GENERIC_WRITE = 0x40000000L; public static final long FILE_SHARE_READ = 0x00000001L; public static final long FILE_SHARE_WRITE = 0x00000002L; public static final long FILE_SHARE_DELETE = 0x00000004L; public static final long CREATE_NEW = 1; public static final long CREATE_ALWAYS = 2; public static final long OPEN_EXISTING = 3; public static final long OPEN_ALWAYS = 4; public static final long TRUNCATE_EXISTING = 5; public static final long FILE_BEGIN = 0; public static final long FILE_CURRENT = 1; public static final long FILE_END = 2; public static final long FILE_ATTRIBUTE_NORMAL = 0x00000080L; /** * Create a directory with permissions set to the specified mode. By setting * permissions at creation time, we avoid issues related to the user lacking * WRITE_DAC rights on subsequent chmod calls. One example where this can * occur is writing to an SMB share where the user does not have Full Control * rights, and therefore WRITE_DAC is denied. * * @param path directory to create * @param mode permissions of new directory * @throws IOException if there is an I/O error */ public static void createDirectoryWithMode(File path, int mode) throws IOException { createDirectoryWithMode0(path.getAbsolutePath(), mode); } /** Wrapper around CreateDirectory() on Windows */ private static native void createDirectoryWithMode0(String path, int mode) throws NativeIOException; /** Wrapper around CreateFile() on Windows */ public static native FileDescriptor createFile(String path, long desiredAccess, long shareMode, long creationDisposition) throws IOException; /** * Create a file for write with permissions set to the specified mode. By * setting permissions at creation time, we avoid issues related to the user * lacking WRITE_DAC rights on subsequent chmod calls. One example where * this can occur is writing to an SMB share where the user does not have * Full Control rights, and therefore WRITE_DAC is denied. * * This method mimics the semantics implemented by the JDK in * {@link java.io.FileOutputStream}. The file is opened for truncate or * append, the sharing mode allows other readers and writers, and paths * longer than MAX_PATH are supported. (See io_util_md.c in the JDK.) * * @param path file to create * @param append if true, then open file for append * @param mode permissions of new directory * @return FileOutputStream of opened file * @throws IOException if there is an I/O error */ public static FileOutputStream createFileOutputStreamWithMode(File path, boolean append, int mode) throws IOException { long desiredAccess = GENERIC_WRITE; long shareMode = FILE_SHARE_READ | FILE_SHARE_WRITE; long creationDisposition = append ? OPEN_ALWAYS : CREATE_ALWAYS; return new FileOutputStream(createFileWithMode0(path.getAbsolutePath(), desiredAccess, shareMode, creationDisposition, mode)); } /** Wrapper around CreateFile() with security descriptor on Windows */ private static native FileDescriptor createFileWithMode0(String path, long desiredAccess, long shareMode, long creationDisposition, int mode) throws NativeIOException; /** Wrapper around SetFilePointer() on Windows */ public static native long setFilePointer(FileDescriptor fd, long distanceToMove, long moveMethod) throws IOException; /** Windows only methods used for getOwner() implementation */ private static native String getOwner(FileDescriptor fd) throws IOException; /** Supported list of Windows access right flags */ public static enum AccessRight { ACCESS_READ (0x0001), // FILE_READ_DATA ACCESS_WRITE (0x0002), // FILE_WRITE_DATA ACCESS_EXECUTE (0x0020); // FILE_EXECUTE private final int accessRight; AccessRight(int access) { accessRight = access; } public int accessRight() { return accessRight; } }; /** Windows only method used to check if the current process has requested * access rights on the given path. */ private static native boolean access0(String path, int requestedAccess); /** * Checks whether the current process has desired access rights on * the given path. * * Longer term this native function can be substituted with JDK7 * function Files#isReadable, isWritable, isExecutable. * * @param path input path * @param desiredAccess ACCESS_READ, ACCESS_WRITE or ACCESS_EXECUTE * @return true if access is allowed * @throws IOException I/O exception on error */ public static boolean access(String path, AccessRight desiredAccess) throws IOException { return true; } /** * Extends both the minimum and maximum working set size of the current * process. This method gets the current minimum and maximum working set * size, adds the requested amount to each and then sets the minimum and * maximum working set size to the new values. Controlling the working set * size of the process also controls the amount of memory it can lock. * * @param delta amount to increment minimum and maximum working set size * @throws IOException for any error * @see POSIX#mlock(ByteBuffer, long) */ public static native void extendWorkingSetSize(long delta) throws IOException; static { if (NativeCodeLoader.isNativeCodeLoaded()) { try { initNative(); nativeLoaded = true; } catch (Throwable t) { // This can happen if the user has an older version of libhadoop.so // installed - in this case we can continue without native IO // after warning PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t); } } } } private static final Logger LOG = LoggerFactory.getLogger(NativeIO.class); private static boolean nativeLoaded = false; static { if (NativeCodeLoader.isNativeCodeLoaded()) { try { initNative(); nativeLoaded = true; } catch (Throwable t) { // This can happen if the user has an older version of libhadoop.so // installed - in this case we can continue without native IO // after warning PerformanceAdvisory.LOG.debug("Unable to initialize NativeIO libraries", t); } } } /** * Return true if the JNI-based native IO extensions are available. */ public static boolean isAvailable() { return NativeCodeLoader.isNativeCodeLoaded() && nativeLoaded; } /** Initialize the JNI method ID and class ID cache */ private static native void initNative(); /** * Get the maximum number of bytes that can be locked into memory at any * given point. * * @return 0 if no bytes can be locked into memory; * Long.MAX_VALUE if there is no limit; * The number of bytes that can be locked into memory otherwise. */ static long getMemlockLimit() { return isAvailable() ? getMemlockLimit0() : 0; } private static native long getMemlockLimit0(); /** * @return the operating system's page size. */ static long getOperatingSystemPageSize() { try { Field f = Unsafe.class.getDeclaredField("theUnsafe"); f.setAccessible(true); Unsafe unsafe = (Unsafe)f.get(null); return unsafe.pageSize(); } catch (Throwable e) { LOG.warn("Unable to get operating system page size. Guessing 4096.", e); return 4096; } } private static class CachedUid { final long timestamp; final String username; public CachedUid(String username, long timestamp) { this.timestamp = timestamp; this.username = username; } } private static final Map<Long, CachedUid> uidCache = new ConcurrentHashMap<Long, CachedUid>(); private static long cacheTimeout; private static boolean initialized = false; /** * The Windows logon name has two part, NetBIOS domain name and * user account name, of the format DOMAIN\UserName. This method * will remove the domain part of the full logon name. * * @param Fthe full principal name containing the domain * @return name with domain removed */ private static String stripDomain(String name) { int i = name.indexOf('\\'); if (i != -1) name = name.substring(i + 1); return name; } public static String getOwner(FileDescriptor fd) throws IOException { ensureInitialized(); if (Shell.WINDOWS) { String owner = Windows.getOwner(fd); owner = stripDomain(owner); return owner; } else { long uid = POSIX.getUIDforFDOwnerforOwner(fd); CachedUid cUid = uidCache.get(uid); long now = System.currentTimeMillis(); if (cUid != null && (cUid.timestamp + cacheTimeout) > now) { return cUid.username; } String user = POSIX.getUserName(uid); LOG.info("Got UserName " + user + " for UID " + uid + " from the native implementation"); cUid = new CachedUid(user, now); uidCache.put(uid, cUid); return user; } } /** * Create a FileDescriptor that shares delete permission on the * file opened at a given offset, i.e. other process can delete * the file the FileDescriptor is reading. Only Windows implementation * uses the native interface. */ public static FileDescriptor getShareDeleteFileDescriptor( File f, long seekOffset) throws IOException { if (!Shell.WINDOWS) { RandomAccessFile rf = new RandomAccessFile(f, "r"); if (seekOffset > 0) { rf.seek(seekOffset); } return rf.getFD(); } else { // Use Windows native interface to create a FileDescriptor that // shares delete permission on the file opened, and set it to the // given offset. // FileDescriptor fd = NativeIO.Windows.createFile( f.getAbsolutePath(), NativeIO.Windows.GENERIC_READ, NativeIO.Windows.FILE_SHARE_READ | NativeIO.Windows.FILE_SHARE_WRITE | NativeIO.Windows.FILE_SHARE_DELETE, NativeIO.Windows.OPEN_EXISTING); if (seekOffset > 0) NativeIO.Windows.setFilePointer(fd, seekOffset, NativeIO.Windows.FILE_BEGIN); return fd; } } /** * Create the specified File for write access, ensuring that it does not exist. * @param f the file that we want to create * @param permissions we want to have on the file (if security is enabled) * * @throws AlreadyExistsException if the file already exists * @throws IOException if any other error occurred */ public static FileOutputStream getCreateForWriteFileOutputStream(File f, int permissions) throws IOException { if (!Shell.WINDOWS) { // Use the native wrapper around open(2) try { FileDescriptor fd = NativeIO.POSIX.open(f.getAbsolutePath(), NativeIO.POSIX.O_WRONLY | NativeIO.POSIX.O_CREAT | NativeIO.POSIX.O_EXCL, permissions); return new FileOutputStream(fd); } catch (NativeIOException nioe) { if (nioe.getErrno() == Errno.EEXIST) { throw new AlreadyExistsException(nioe); } throw nioe; } } else { // Use the Windows native APIs to create equivalent FileOutputStream try { FileDescriptor fd = NativeIO.Windows.createFile(f.getCanonicalPath(), NativeIO.Windows.GENERIC_WRITE, NativeIO.Windows.FILE_SHARE_DELETE | NativeIO.Windows.FILE_SHARE_READ | NativeIO.Windows.FILE_SHARE_WRITE, NativeIO.Windows.CREATE_NEW); NativeIO.POSIX.chmod(f.getCanonicalPath(), permissions); return new FileOutputStream(fd); } catch (NativeIOException nioe) { if (nioe.getErrorCode() == 80) { // ERROR_FILE_EXISTS // 80 (0x50) // The file exists throw new AlreadyExistsException(nioe); } throw nioe; } } } private synchronized static void ensureInitialized() { if (!initialized) { cacheTimeout = new Configuration().getLong("hadoop.security.uid.cache.secs", 4*60*60) * 1000; LOG.info("Initialized cache for UID to User mapping with a cache" + " timeout of " + cacheTimeout/1000 + " seconds."); initialized = true; } } /** * A version of renameTo that throws a descriptive exception when it fails. * * @param src The source path * @param dst The destination path * * @throws NativeIOException On failure. */ public static void renameTo(File src, File dst) throws IOException { if (!nativeLoaded) { if (!src.renameTo(dst)) { throw new IOException("renameTo(src=" + src + ", dst=" + dst + ") failed."); } } else { renameTo0(src.getAbsolutePath(), dst.getAbsolutePath()); } } /** * Creates a hardlink "dst" that points to "src". * * This is deprecated since JDK7 NIO can create hardlinks via the * {@link java.nio.file.Files} API. * * @param src source file * @param dst hardlink location * @throws IOException */ @Deprecated public static void link(File src, File dst) throws IOException { if (!nativeLoaded) { HardLink.createHardLink(src, dst); } else { link0(src.getAbsolutePath(), dst.getAbsolutePath()); } } /** * A version of renameTo that throws a descriptive exception when it fails. * * @param src The source path * @param dst The destination path * * @throws NativeIOException On failure. */ private static native void renameTo0(String src, String dst) throws NativeIOException; private static native void link0(String src, String dst) throws NativeIOException; /** * Unbuffered file copy from src to dst without tainting OS buffer cache * * In POSIX platform: * It uses FileChannel#transferTo() which internally attempts * unbuffered IO on OS with native sendfile64() support and falls back to * buffered IO otherwise. * * It minimizes the number of FileChannel#transferTo call by passing the the * src file size directly instead of a smaller size as the 3rd parameter. * This saves the number of sendfile64() system call when native sendfile64() * is supported. In the two fall back cases where sendfile is not supported, * FileChannle#transferTo already has its own batching of size 8 MB and 8 KB, * respectively. * * In Windows Platform: * It uses its own native wrapper of CopyFileEx with COPY_FILE_NO_BUFFERING * flag, which is supported on Windows Server 2008 and above. * * Ideally, we should use FileChannel#transferTo() across both POSIX and Windows * platform. Unfortunately, the wrapper(Java_sun_nio_ch_FileChannelImpl_transferTo0) * used by FileChannel#transferTo for unbuffered IO is not implemented on Windows. * Based on OpenJDK 6/7/8 source code, Java_sun_nio_ch_FileChannelImpl_transferTo0 * on Windows simply returns IOS_UNSUPPORTED. * * Note: This simple native wrapper does minimal parameter checking before copy and * consistency check (e.g., size) after copy. * It is recommended to use wrapper function like * the Storage#nativeCopyFileUnbuffered() function in hadoop-hdfs with pre/post copy * checks. * * @param src The source path * @param dst The destination path * @throws IOException */ public static void copyFileUnbuffered(File src, File dst) throws IOException { if (nativeLoaded && Shell.WINDOWS) { copyFileUnbuffered0(src.getAbsolutePath(), dst.getAbsolutePath()); } else { FileInputStream fis = new FileInputStream(src); FileChannel input = null; try { input = fis.getChannel(); try (FileOutputStream fos = new FileOutputStream(dst); FileChannel output = fos.getChannel()) { long remaining = input.size(); long position = 0; long transferred = 0; while (remaining > 0) { transferred = input.transferTo(position, remaining, output); remaining -= transferred; position += transferred; } } } finally { IOUtils.cleanupWithLogger(LOG, input, fis); } } } private static native void copyFileUnbuffered0(String src, String dst) throws NativeIOException; }
三、關於這個使用maven構建的專案,我在執行時因為使用公司內網,速度很慢,所以改變策略。建立java專案,然後把hadoop2.9.2裡面的share目錄下的common、hdfs、httpfs、yarn、mapreduce目錄下的jar檔案都拷了進來,執行中出了不少bug。
hadoop-hdfs-2.9.2.jar hadoop-hdfs-client-2.9.2.jar hadoop-mapreduce-client-app-2.9.2.jar hadoop-mapreduce-client-common-2.9.2.jar hadoop-mapreduce-client-core-2.9.2.jar hadoop-mapreduce-client-hs-2.9.2.jar hadoop-mapreduce-client-jobclient-2.9.2-tests.jar hadoop-mapreduce-client-shuffle-2.9.2.jar hadoop-yarn-api-2.9.2.jar hadoop-yarn-applications-distributedshell-2.9.2.jar hadoop-yarn-applications-unmanaged-am-launcher-2.9.2.jar hadoop-yarn-client-2.9.2.jar activation-1.1.jar aopalliance-1.0.jar apacheds-i18n-2.0.0-M15.jar apacheds-kerberos-codec-2.0.0-M15.jar api-asn1-api-1.0.0-M20.jar api-util-1.0.0-M20.jar asm-3.2.jar avro-1.7.7.jar commons-beanutils-1.7.0.jar commons-beanutils-core-1.8.0.jar commons-cli-1.2.jar commons-codec-1.4.jar commons-collections-3.2.2.jar commons-compress-1.4.1.jar commons-configuration-1.6.jar commons-digester-1.8.jar commons-io-2.4.jar commons-lang-2.6.jar commons-lang3-3.4.jar commons-logging-1.1.3.jar commons-math3-3.1.1.jar commons-net-3.1.jar curator-client-2.7.1.jar curator-framework-2.7.1.jar curator-recipes-2.7.1.jar ehcache-3.3.1.jar fst-2.50.jar geronimo-jcache_1.0_spec-1.0-alpha-1.jar gson-2.2.4.jar guava-11.0.2.jar guice-3.0.jar guice-servlet-3.0.jar HikariCP-java7-2.4.12.jar htrace-core4-4.1.0-incubating.jar httpclient-4.5.2.jar httpcore-4.4.4.jar jackson-core-asl-1.9.13.jar jackson-jaxrs-1.9.13.jar jackson-mapper-asl-1.9.13.jar jackson-xc-1.9.13.jar java-util-1.9.0.jar java-xmlbuilder-0.4.jar javax.inject-1.jar jaxb-api-2.2.2.jar jaxb-impl-2.2.3-1.jar jcip-annotations-1.0-1.jar jersey-client-1.9.jar jersey-core-1.9.jar jersey-guice-1.9.jar jersey-json-1.9.jar jersey-server-1.9.jar jets3t-0.9.0.jar jettison-1.1.jar jetty-6.1.26.jar jetty-sslengine-6.1.26.jar jetty-util-6.1.26.jar jsch-0.1.54.jar json-io-2.5.1.jar json-smart-1.3.1.jar jsp-api-2.1.jar jsr305-3.0.0.jar leveldbjni-all-1.8.jar log4j-1.2.17.jar metrics-core-3.0.1.jar mssql-jdbc-6.2.1.jre7.jar netty-3.6.2.Final.jar nimbus-jose-jwt-4.41.1.jar paranamer-2.3.jar protobuf-java-2.5.0.jar servlet-api-2.5.jar snappy-java-1.0.5.jar stax-api-1.0-2.jar stax2-api-3.1.4.jar woodstox-core-5.0.3.jar xmlenc-0.52.jar xz-1.0.jar zookeeper-3.4.6.jar hadoop-common-2.9.2.jar slf4j-api-1.7.25.jar slf4j-log4j12-1.7.25.jar hadoop-yarn-server-nodemanager-2.9.2.jar hadoop-yarn-server-resourcemanager-2.9.2.jar hadoop-yarn-server-router-2.9.2.jar hadoop-yarn-server-sharedcachemanager-2.9.2.jar hadoop-yarn-server-timeline-pluginstorage-2.9.2.jar hadoop-yarn-server-web-proxy-2.9.2.jar hadoop-yarn-ui-2.9.2.war hadoop-annotations-2.9.2.jar hadoop-auth-2.9.2.jar hadoop-nfs-2.9.2.jar hamcrest-core-1.3.jar junit-4.11.jar hadoop-mapreduce-client-jobclient-2.9.2.jar mockito-all-1.8.5.jar ojdbc7.jar orai18n.jar hadoop-yarn-common-2.9.2.jar hadoop-yarn-registry-2.9.2.jar hadoop-yarn-server-applicationhistoryservice-2.9.2.jar hadoop-yarn-server-common-2.9.2.jar
前言
Web日誌包含著網站最重要的資訊,通過日誌分析,我們可以知道網站的訪問量,哪個網頁訪問人數最多,哪個網頁最有價值等。一般中型的網站(10W的PV以上),每天會產生1G以上Web日誌檔案。大型或超大型的網站,可能每小時就會產生10G的資料量。
對於日誌的這種規模的資料,用Hadoop進行日誌分析,是最適合不過的了。
目錄
- Web日誌分析概述
- 需求分析:KPI指標設計
- 演算法模型:Hadoop並行演算法
- 架構設計:日誌KPI系統架構
- 程式開發1:用Maven構建Hadoop專案
- 程式開發2:MapReduce程式實現
1. Web日誌分析概述
Web日誌由Web伺服器產生,可能是Nginx, Apache, Tomcat等。從Web日誌中,我們可以獲取網站每類頁面的PV值(PageView,頁面訪問量)、獨立IP數;稍微複雜一些的,可以計算得出使用者所檢索的關鍵詞排行榜、使用者停留時間最高的頁面等;更復雜的,構建廣告點選模型、分析使用者行為特徵等等。
在Web日誌中,每條日誌通常代表著使用者的一次訪問行為,例如下面就是一條nginx日誌:
222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939
"http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
拆解為以下8個變數
- remote_addr: 記錄客戶端的ip地址, 222.68.172.190
- remote_user: 記錄客戶端使用者名稱稱, –
- time_local: 記錄訪問時間與時區, [18/Sep/2013:06:49:57 +0000]
- request: 記錄請求的url與http協議, “GET /images/my.jpg HTTP/1.1”
- status: 記錄請求狀態,成功是200, 200
- body_bytes_sent: 記錄傳送給客戶端檔案主體內容大小, 19939
- http_referer: 用來記錄從那個頁面連結訪問過來的, “http://www.angularjs.cn/A00n”
- http_user_agent: 記錄客戶瀏覽器的相關資訊, “Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36”
注:要更多的資訊,則要用其它手段去獲取,通過js程式碼單獨傳送請求,使用cookies記錄使用者的訪問資訊。
利用這些日誌資訊,我們可以深入挖掘網站的祕密了。
少量資料的情況
少量資料的情況(10Mb,100Mb,10G),在單機處理尚能忍受的時候,我可以直接利用各種Unix/Linux工具,awk、grep、sort、join等都是日誌分析的利器,再配合perl, python,正則表達工,基本就可以解決所有的問題。
例如,我們想從上面提到的nginx日誌中得到訪問量最高前10個IP,實現很簡單:
~ cat access.log.10 | awk '{a[$1]++} END {for(b in a) print b"\t"a[b]}' | sort -k2 -r | head -n 10
163.177.71.12 972
101.226.68.137 972
183.195.232.138 971
50.116.27.194 97
14.17.29.86 96
61.135.216.104 94
61.135.216.105 91
61.186.190.41 9
59.39.192.108 9
220.181.51.212 9
海量資料的情況
當資料量每天以10G、100G增長的時候,單機處理能力已經不能滿足需求。我們就需要增加系統的複雜性,用計算機叢集,儲存陣列來解決。在Hadoop出現之前,海量資料儲存,和海量日誌分析都是非常困難的。只有少數一些公司,掌握著高效的平行計算,分步式計算,分步式儲存的核心技術。
Hadoop的出現,大幅度的降低了海量資料處理的門檻,讓小公司甚至是個人都能力,搞定海量資料。並且,Hadoop非常適用於日誌分析系統。
2.需求分析:KPI指標設計
下面我們將從一個公司案例出發來全面的解釋,如何用進行海量Web日誌分析,提取KPI資料。
案例介紹
某電子商務網站,在線團購業務。每日PV數100w,獨立IP數5w。使用者通常在工作日上午10:00-12:00和下午15:00-18:00訪問量最大。日間主要是通過PC端瀏覽器訪問,休息日及夜間通過移動裝置訪問較多。網站搜尋瀏量佔整個網站的80%,PC使用者不足1%的使用者會消費,移動使用者有5%會消費。
通過簡短的描述,我們可以粗略地看出,這家電商網站的經營狀況,並認識到願意消費的使用者從哪裡來,有哪些潛在的使用者可以挖掘,網站是否存在倒閉風險等。
KPI指標設計
- PV(PageView): 頁面訪問量統計
- IP: 頁面獨立IP的訪問量統計
- Time: 使用者每小時PV的統計
- Source: 使用者來源域名的統計
- Browser: 使用者的訪問裝置統計
注:商業保密限制,無法提供電商網站的日誌。
下面的內容,將以我的個人網站為例提取資料進行分析。
百度統計,對我個人網站做的統計!http://www.fens.me
從商業的角度,個人網站的特徵與電商網站不太一樣,沒有轉化率,同時跳出率也比較高。從技術的角度,同樣都關注KPI指標設計。
3.演算法模型:Hadoop並行演算法
並行演算法的設計:
注:找到第一節有定義的8個變數
PV(PageView): 頁面訪問量統計
- Map過程{key:$request,value:1}
- Reduce過程{key:$request,value:求和(sum)}
IP: 頁面獨立IP的訪問量統計
- Map: {key:$request,value:$remote_addr}
- Reduce: {key:$request,value:去重再求和(sum(unique))}
Time: 使用者每小時PV的統計
- Map: {key:$time_local,value:1}
- Reduce: {key:$time_local,value:求和(sum)}
Source: 使用者來源域名的統計
- Map: {key:$http_referer,value:1}
- Reduce: {key:$http_referer,value:求和(sum)}
Browser: 使用者的訪問裝置統計
- Map: {key:$http_user_agent,value:1}
- Reduce: {key:$http_user_agent,value:求和(sum)}
4.架構設計:日誌KPI系統架構
上圖中,左邊是Application業務系統,右邊是Hadoop的HDFS, MapReduce。
- 日誌是由業務系統產生的,我們可以設定web伺服器每天產生一個新的目錄,目錄下面會產生多個日誌檔案,每個日誌檔案64M。
- 設定系統定時器CRON,夜間在0點後,向HDFS匯入昨天的日誌檔案。
- 完成匯入後,設定系統定時器,啟動MapReduce程式,提取並計算統計指標。
- 完成計算後,設定系統定時器,從HDFS匯出統計指標資料到資料庫,方便以後的即使查詢。
上面這幅圖,我們可以看得更清楚,資料是如何流動的。藍色背景的部分是在Hadoop中的,接下來我們的任務就是完成MapReduce的程式實現。
5.程式開發1:用Maven構建Hadoop專案
請參考文章:用Maven構建Hadoop專案
win7的開發環境 和 Hadoop的執行環境 ,在上面文章中已經介紹過了。
我們需要放日誌檔案,上傳的HDFS裡/user/hdfs/log_kpi/目錄,參考下面的命令操作
~ hadoop fs -mkdir /user/hdfs/log_kpi
~ hadoop fs -copyFromLocal /home/conan/datafiles/access.log.10 /user/hdfs/log_kpi/
我已經把整個MapReduce的實現都放到了github上面:
https://github.com/bsspirit/maven_hadoop_template/releases/tag/kpi_v1
6.程式開發2:MapReduce程式實現
開發流程:
- 對日誌行的解析
- Map函式實現
- Reduce函式實現
- 啟動程式實現
1). 對日誌行的解析
新建檔案:org.conan.myhadoop.mr.kpi.KPI.java
package org.conan.myhadoop.mr.kpi;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Locale;
/*
* KPI Object
*/
public class KPI {
private String remote_addr;// 記錄客戶端的ip地址
private String remote_user;// 記錄客戶端使用者名稱稱,忽略屬性"-"
private String time_local;// 記錄訪問時間與時區
private String request;// 記錄請求的url與http協議
private String status;// 記錄請求狀態;成功是200
private String body_bytes_sent;// 記錄傳送給客戶端檔案主體內容大小
private String http_referer;// 用來記錄從那個頁面連結訪問過來的
private String http_user_agent;// 記錄客戶瀏覽器的相關資訊
private boolean valid = true;// 判斷資料是否合法
@Override
public String toString() {
StringBuilder sb = new StringBuilder();
sb.append("valid:" + this.valid);
sb.append("\nremote_addr:" + this.remote_addr);
sb.append("\nremote_user:" + this.remote_user);
sb.append("\ntime_local:" + this.time_local);
sb.append("\nrequest:" + this.request);
sb.append("\nstatus:" + this.status);
sb.append("\nbody_bytes_sent:" + this.body_bytes_sent);
sb.append("\nhttp_referer:" + this.http_referer);
sb.append("\nhttp_user_agent:" + this.http_user_agent);
return sb.toString();
}
public String getRemote_addr() {
return remote_addr;
}
public void setRemote_addr(String remote_addr) {
this.remote_addr = remote_addr;
}
public String getRemote_user() {
return remote_user;
}
public void setRemote_user(String remote_user) {
this.remote_user = remote_user;
}
public String getTime_local() {
return time_local;
}
public Date getTime_local_Date() throws ParseException {
SimpleDateFormat df = new SimpleDateFormat("dd/MMM/yyyy:HH:mm:ss", Locale.US);
return df.parse(this.time_local);
}
public String getTime_local_Date_hour() throws ParseException{
SimpleDateFormat df = new SimpleDateFormat("yyyyMMddHH");
return df.format(this.getTime_local_Date());
}
public void setTime_local(String time_local) {
this.time_local = time_local;
}
public String getRequest() {
return request;
}
public void setRequest(String request) {
this.request = request;
}
public String getStatus() {
return status;
}
public void setStatus(String status) {
this.status = status;
}
public String getBody_bytes_sent() {
return body_bytes_sent;
}
public void setBody_bytes_sent(String body_bytes_sent) {
this.body_bytes_sent = body_bytes_sent;
}
public String getHttp_referer() {
return http_referer;
}
public String getHttp_referer_domain(){
if(http_referer.length()<8){
return http_referer;
}
String str=this.http_referer.replace("\"", "").replace("http://", "").replace("https://", "");
return str.indexOf("/")>0?str.substring(0, str.indexOf("/")):str;
}
public void setHttp_referer(String http_referer) {
this.http_referer = http_referer;
}
public String getHttp_user_agent() {
return http_user_agent;
}
public void setHttp_user_agent(String http_user_agent) {
this.http_user_agent = http_user_agent;
}
public boolean isValid() {
return valid;
}
public void setValid(boolean valid) {
this.valid = valid;
}
public static void main(String args[]) {
String line = "222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] \"GET /images/my.jpg HTTP/1.1\" 200 19939 \"http://www.angularjs.cn/A00n\" \"Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36\"";
System.out.println(line);
KPI kpi = new KPI();
String[] arr = line.split(" ");
kpi.setRemote_addr(arr[0]);
kpi.setRemote_user(arr[1]);
kpi.setTime_local(arr[3].substring(1));
kpi.setRequest(arr[6]);
kpi.setStatus(arr[8]);
kpi.setBody_bytes_sent(arr[9]);
kpi.setHttp_referer(arr[10]);
kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
System.out.println(kpi);
try {
SimpleDateFormat df = new SimpleDateFormat("yyyy.MM.dd:HH:mm:ss", Locale.US);
System.out.println(df.format(kpi.getTime_local_Date()));
System.out.println(kpi.getTime_local_Date_hour());
System.out.println(kpi.getHttp_referer_domain());
} catch (ParseException e) {
e.printStackTrace();
}
}
}
從日誌檔案中,取一行通過main函式寫一個簡單的解析測試。
控制檯輸出:
222.68.172.190 - - [18/Sep/2013:06:49:57 +0000] "GET /images/my.jpg HTTP/1.1" 200 19939 "http://www.angularjs.cn/A00n" "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/29.0.1547.66 Safari/537.36"
valid:true
remote_addr:222.68.172.190
remote_user:-
time_local:18/Sep/2013:06:49:57
request:/images/my.jpg
status:200
body_bytes_sent:19939
http_referer:"http://www.angularjs.cn/A00n"
http_user_agent:"Mozilla/5.0 (Windows
2013.09.18:06:49:57
2013091806
www.angularjs.cn
我們看到日誌行,被正確的解析成了kpi物件的屬性。我們把解析過程,單獨封裝成一個方法。
private static KPI parser(String line) {
System.out.println(line);
KPI kpi = new KPI();
String[] arr = line.split(" ");
if (arr.length > 11) {
kpi.setRemote_addr(arr[0]);
kpi.setRemote_user(arr[1]);
kpi.setTime_local(arr[3].substring(1));
kpi.setRequest(arr[6]);
kpi.setStatus(arr[8]);
kpi.setBody_bytes_sent(arr[9]);
kpi.setHttp_referer(arr[10]);
if (arr.length > 12) {
kpi.setHttp_user_agent(arr[11] + " " + arr[12]);
} else {
kpi.setHttp_user_agent(arr[11]);
}
if (Integer.parseInt(kpi.getStatus()) >= 400) {// 大於400,HTTP錯誤
kpi.setValid(false);
}
} else {
kpi.setValid(false);
}
return kpi;
}
對map方法,reduce方法,啟動方法,我們單獨寫一個類來實現
下面將分別介紹MapReduce的實現類:
- PV:org.conan.myhadoop.mr.kpi.KPIPV.java
- IP: org.conan.myhadoop.mr.kpi.KPIIP.java
- Time: org.conan.myhadoop.mr.kpi.KPITime.java
- Browser: org.conan.myhadoop.mr.kpi.KPIBrowser.java
1). PV:org.conan.myhadoop.mr.kpi.KPIPV.java
package org.conan.myhadoop.mr.kpi;
import java.io.IOException;
import java.util.Iterator;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class KPIPV {
public static class KPIPVMapper extends MapReduceBase implements Mapper<object, text,="" intwritable=""> {
private IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(Object key, Text value, OutputCollector<text, intwritable=""> output, Reporter reporter) throws IOException {
KPI kpi = KPI.filterPVs(value.toString());
if (kpi.isValid()) {
word.set(kpi.getRequest());
output.collect(word, one);
}
}
}
public static class KPIPVReducer extends MapReduceBase implements Reducer<text, intwritable,="" text,="" intwritable=""> {
private IntWritable result = new IntWritable();
@Override
public void reduce(Text key, Iterator values, OutputCollector<text, intwritable=""> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
result.set(sum);
output.collect(key, result);
}
}
public static void main(String[] args) throws Exception {
String input = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/";
String output = "hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv";
JobConf conf = new JobConf(KPIPV.class);
conf.setJobName("KPIPV");
conf.addResource("classpath:/hadoop/core-site.xml");
conf.addResource("classpath:/hadoop/hdfs-site.xml");
conf.addResource("classpath:/hadoop/mapred-site.xml");
conf.setMapOutputKeyClass(Text.class);
conf.setMapOutputValueClass(IntWritable.class);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(KPIPVMapper.class);
conf.setCombinerClass(KPIPVReducer.class);
conf.setReducerClass(KPIPVReducer.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output));
JobClient.runJob(conf);
System.exit(0);
}
}
在程式中會呼叫KPI類的方法
KPI kpi = KPI.filterPVs(value.toString());
通過filterPVs方法,我們可以實現對PV,更多的控制。
在KPK.java中,增加filterPVs方法
/**
* 按page的pv分類
*/
public static KPI filterPVs(String line) {
KPI kpi = parser(line);
Set pages = new HashSet();
pages.add("/about");
pages.add("/black-ip-list/");
pages.add("/cassandra-clustor/");
pages.add("/finance-rhive-repurchase/");
pages.add("/hadoop-family-roadmap/");
pages.add("/hadoop-hive-intro/");
pages.add("/hadoop-zookeeper-intro/");
pages.add("/hadoop-mahout-roadmap/");
if (!pages.contains(kpi.getRequest())) {
kpi.setValid(false);
}
return kpi;
}
在filterPVs方法,我們定義了一個pages的過濾,就是隻對這個頁面進行PV統計。
我們執行一下KPIPV.java
2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer flush
資訊: Starting flush of map output
2013-10-9 11:53:28 org.apache.hadoop.mapred.MapTask$MapOutputBuffer sortAndSpill
資訊: Finished spill 0
2013-10-9 11:53:28 org.apache.hadoop.mapred.Task done
資訊: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
資訊: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
資訊: hdfs://192.168.1.210:9000/user/hdfs/log_kpi/access.log.10:0+3025757
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task sendDone
資訊: Task 'attempt_local_0001_m_000000_0' done.
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task initialize
資訊: Using ResourceCalculatorPlugin : null
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
資訊:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
資訊: Merging 1 sorted segments
2013-10-9 11:53:30 org.apache.hadoop.mapred.Merger$MergeQueue merge
資訊: Down to the last merge-pass, with 1 segments left of total size: 213 bytes
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
資訊:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task done
資訊: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
2013-10-9 11:53:30 org.apache.hadoop.mapred.LocalJobRunner$Job statusUpdate
資訊:
2013-10-9 11:53:30 org.apache.hadoop.mapred.Task commit
資訊: Task attempt_local_0001_r_000000_0 is allowed to commit now
2013-10-9 11:53:30 org.apache.hadoop.mapred.FileOutputCommitter commitTask
資訊: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://192.168.1.210:9000/user/hdfs/log_kpi/pv
2013-10-9 11:53:31 org.apache.hadoop.mapred.JobClient monitorAndPrintJob
資訊: map 100% redu