谷歌開源TF-Ranking可擴充套件庫,支援多種排序學習
銅靈 發自 凹非寺
量子位 出品 | 公眾號 QbitAI
最近,谷歌新開源了可擴充套件的TensorFlow庫TF-Ranking,可用於學習排序。所謂學習排序,也就是對專案列表進行排序,從而將整個功能最大化的過程。
TF-Ranking中有一套完整的學習排序的演算法,包含成對或列表損失函式、多專案評分、排名度量優化和無偏見的學習排名。
谷歌在官方部落格表示,TF-Ranking在建立高質量排名模型時速度快且易於使用,這套統一的框架能幫助ML研究人員、從業者和愛好者能夠在單個庫中評估和選擇一系列不同的排名模型。
谷歌還提供了靈活的API
支援現有演算法和衡量標準
TF-Ranking的適用性很廣,既可支援目前廣泛使用的排序學習演算法,還能通過嵌入和擴充套件到數億個訓練示例來處理稀疏特徵。
TF-Ranking支援許多常用的排名衡量標準,包括平均倒數排名(MRR)和NDCG,還可以在TensorBoard(開源TensorFlow視覺化儀表板)上顯示這些標準。
多專案評分
TF-Ranking支援與以往不同的評分機制,比如,可以挑戰一把多專案評分。這是此前的一個難以進行推理的行業瓶頸。
TF-Ranking提供的List-In-List-Out(LILO)API能將所有這些邏輯包裝在匯出的TensorFlow模型中。
研究人員在論文中介紹說,讓TF-Rankin在公共LETOR基準測試中進行多專案評分,進而與RankNet、MART和LambdaMART等最先進的學習模型相比,TF-Rankin具有競爭力。
優化排名標準
學習排名中的一個重要研究挑戰是排名標準的直接優化。在TF-Ranking中,研究人員提出了一種新方法LambdaLoss,是為排名標準優化準備的概率框架。
在此框架中,可以通過期望最大化過程來設計和優化標準驅動的損失函式。
除了上述特徵外,研究人員最後再次強調, TF-Ranking也是一個無偏見的排序學習庫。
這篇新部落格就醬,對TF-Ranking感興趣的話,可進一步探索以下官方資料:
傳送門
部落格地址:
https://ai.googleblog.com/2018/12/tf-ranking-scalable-tensorflow-library.html
論文地址:
https://arxiv.org/abs/1812.00073
程式碼地址:
https://github.com/tensorflow/ranking
教程地址:
https://github.com/tensorflow/ranking/tree/master/tensorflow_ranking/examples
— 完 —