Map 大家族的那點事兒 ( 6 ) :LinkedHashMap
LinkedHashMap繼承HashMap並實現了Map介面,同時具有可預測的迭代順序(按照插入順序排序)。它與HashMap的不同之處在於,維護了一條貫穿其全部Entry的雙向連結串列(因為額外維護了連結串列的關係,效能上要略差於HashMap,不過集合檢視的遍歷時間與元素數量成正比,而HashMap是與buckets陣列的長度成正比的),可以認為它是散列表與連結串列的結合。
/** * The head (eldest) of the doubly linked list. */ transient LinkedHashMap.Entry<K,V> head; /** * The tail (youngest) of the doubly linked list. */ transient LinkedHashMap.Entry<K,V> tail; /** * 迭代順序模式的標記位,如果為true,採用訪問排序,否則,採用插入順序 * 預設插入順序(建構函式中預設設定為false) */ final boolean accessOrder; /** * Constructs an empty insertion-ordered <tt>LinkedHashMap</tt> instance * with the default initial capacity (16) and load factor (0.75). */ public LinkedHashMap() { super(); accessOrder = false; }
LinkedHashMap的Entry實現也繼承自HashMap,只不過多了指向前後的兩個指標。
/** * HashMap.Node subclass for normal LinkedHashMap entries. */ static class Entry<K,V> extends HashMap.Node<K,V> { Entry<K,V> before, after; Entry(int hash, K key, V value, Node<K,V> next) { super(hash, key, value, next); } }
你也可以通過建構函式來構造一個迭代順序為訪問順序(accessOrder設為true)的LinkedHashMap,這個訪問順序指的是按照最近被訪問的Entry的順序進行排序(從最近最少訪問到最近最多訪問)。基於這點可以簡單實現一個採用LRU(Least Recently Used)策略的快取。
public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; }
LinkedHashMap複用了HashMap的大部分程式碼,所以它的查詢實現是非常簡單的,唯一稍微複雜點的操作是保證訪問順序。
public V get(Object key) { Node<K,V> e; if ((e = getNode(hash(key), key)) == null) return null; if (accessOrder) afterNodeAccess(e); return e.value; }
還記得這些afterNodeXXXX命名格式的函式嗎?我們之前已經在HashMap中見識過了,這些函式在HashMap中只是一個空實現,是專門用來讓LinkedHashMap重寫實現的hook函式。
// 在HashMap.removeNode()的末尾處呼叫 // 將e從LinkedHashMap的雙向連結串列中刪除 void afterNodeRemoval(Node<K,V> e) { // unlink LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; p.before = p.after = null; if (b == null) head = a; else b.after = a; if (a == null) tail = b; else a.before = b; } // 在HashMap.putVal()的末尾處呼叫 // evict是一個模式標記,如果為false代表buckets陣列處於建立模式 // HashMap.put()函式對此標記設定為true void afterNodeInsertion(boolean evict) { // possibly remove eldest LinkedHashMap.Entry<K,V> first; // LinkedHashMap.removeEldestEntry()永遠返回false // 避免了最年長元素被刪除的可能(就像一個普通的Map一樣) if (evict && (first = head) != null && removeEldestEntry(first)) { K key = first.key; removeNode(hash(key), key, null, false, true); } } // HashMap.get()沒有呼叫此函式,所以LinkedHashMap重寫了get() // get()與put()都會呼叫afterNodeAccess()來保證訪問順序 // 將e移動到tail,代表最近訪問到的節點 void afterNodeAccess(Node<K,V> e) { // move node to last LinkedHashMap.Entry<K,V> last; if (accessOrder && (last = tail) != e) { LinkedHashMap.Entry<K,V> p = (LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after; p.after = null; if (b == null) head = a; else b.after = a; if (a != null) a.before = b; else last = b; if (last == null) head = p; else { p.before = last; last.after = p; } tail = p; ++modCount; } }
注意removeEldestEntry()
預設永遠返回false,這時它的行為與普通的Map無異。如果你把removeEldestEntry()
重寫為永遠返回true,那麼就有可能使LinkedHashMap處於一個永遠為空的狀態(每次put()
或者putAll()
都會刪除頭節點)。
一個比較合理的實現示例:
protected boolean removeEldestEntry(Map.Entry eldest){ return size() > MAX_SIZE; }
LinkedHashMap重寫了newNode()
等函式,以初始化或連線節點到它內部的雙向連結串列:
// 連結節點p到連結串列尾部(或初始化連結串列) private void linkNodeLast(LinkedHashMap.Entry<K,V> p) { LinkedHashMap.Entry<K,V> last = tail; tail = p; if (last == null) head = p; else { p.before = last; last.after = p; } } // 用dst替換掉src private void transferLinks(LinkedHashMap.Entry<K,V> src, LinkedHashMap.Entry<K,V> dst) { LinkedHashMap.Entry<K,V> b = dst.before = src.before; LinkedHashMap.Entry<K,V> a = dst.after = src.after; // src是頭節點 if (b == null) head = dst; else b.after = dst; // src是尾節點 if (a == null) tail = dst; else a.before = dst; } Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) { LinkedHashMap.Entry<K,V> p = new LinkedHashMap.Entry<K,V>(hash, key, value, e); linkNodeLast(p); return p; } Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) { LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p; LinkedHashMap.Entry<K,V> t = new LinkedHashMap.Entry<K,V>(q.hash, q.key, q.value, next); transferLinks(q, t); return t; } TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) { TreeNode<K,V> p = new TreeNode<K,V>(hash, key, value, next); linkNodeLast(p); return p; } TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) { LinkedHashMap.Entry<K,V> q = (LinkedHashMap.Entry<K,V>)p; TreeNode<K,V> t = new TreeNode<K,V>(q.hash, q.key, q.value, next); transferLinks(q, t); return t; }
遍歷LinkedHashMap所需要的時間與Entry數量成正比,這是因為迭代器直接對雙向連結串列進行迭代,而連結串列中只會含有Entry節點。迭代的順序是從頭節點開始一直到尾節點,插入操作會將新節點連結到尾部,所以保證了插入順序,而訪問順序會通過afterNodeAccess()
來保證,訪問次數越多的節點越接近尾部。
abstract class LinkedHashIterator { LinkedHashMap.Entry<K,V> next; LinkedHashMap.Entry<K,V> current; int expectedModCount; LinkedHashIterator() { next = head; expectedModCount = modCount; current = null; } public final boolean hasNext() { return next != null; } final LinkedHashMap.Entry<K,V> nextNode() { LinkedHashMap.Entry<K,V> e = next; if (modCount != expectedModCount) throw new ConcurrentModificationException(); if (e == null) throw new NoSuchElementException(); current = e; next = e.after; return e; } public final void remove() { Node<K,V> p = current; if (p == null) throw new IllegalStateException(); if (modCount != expectedModCount) throw new ConcurrentModificationException(); current = null; K key = p.key; removeNode(hash(key), key, null, false, false); expectedModCount = modCount; } } final class LinkedKeyIterator extends LinkedHashIterator implements Iterator<K> { public final K next() { return nextNode().getKey(); } } final class LinkedValueIterator extends LinkedHashIterator implements Iterator<V> { public final V next() { return nextNode().value; } } final class LinkedEntryIterator extends LinkedHashIterator implements Iterator<Map.Entry<K,V>> { public final Map.Entry<K,V> next() { return nextNode(); } }