gmapping原文: Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters
http://www2.informatik.uni-freiburg.de/~stachnis/pdf/grisetti07tro.pdf
一: 論文提出了兩個approach:
1、自適應重取樣 :(adaptive techniques )減少粒子數,重取樣減小粒子損耗( particle depletion),每一個粒子都是一個單獨的地圖。
2、提議分佈:不僅考慮到機器人的運動,而且考慮到最近的觀察。極大釋然估計,scan-matching 最近的里程計資訊。
二:MAPPING WITH RAO-BLACKWELLIZED PARTICLE FILTERS
公式:p(x1:t,m | z1:t,u1:t−1) = p(m | x1:t,z1:t) · p(x1:t | z1:t,u1:t−1).
引數說明:the map m and thetrajectory x1:t = x1,...,xt of the robot. This estimation is performed given the observations z1:t = z1,...,zt and the odometry measurements u1:t−1 = u1,...,ut−1 obtained by the mobile robot.
該公式表明可以先估計robot的pose,再根據軌跡估算map。這個方法就叫做 Rao-Blackwellization。
根據公式 :p(m | x1:t,z1:t),估算map,因為 x1:t and z1:t 是已知的。
根據公式: p(x1:t | z1:t,u1:t−1) ,利用粒子濾波,估算pose。
常用的粒子濾波演算法是:sampling importance resampling (SIR) filter。
三、 RBPF WITH IMPROVED PROPOSALS AND ADAPTIVE RESAMPLING
A. On the Improved Proposal Distribution (改進提議分佈)
Unfortunately, in the context of SLAM a closed form of this posterior is not available in general. As a result, typical particle filter applications [3, 29] use the odometry motion model
B. Efficient Computation of the Improved Proposal
C. Discussion about the Improved Proposal
D. Adaptive Resampling
E. Algorithm
四. IMPLEMENTATION ISSUES
五. COMPLEXITY
六. EXPERIMENTS
七. RELATED WORK