分散式鎖簡單入門以及三種實現方式
轉載地址 : https://blog.csdn.net/u010870518/article/details/79036337
很多小夥伴在學習Java的時候,總是感覺Java多執行緒在實際的業務中很少使用,以至於不會花太多的時間去學習,技術債不斷累積!等到了一定程度的時候對於與Java多執行緒相關的東西就很難理解,今天需要探討的東西也是一樣的和Java多執行緒相關的!做好準備,馬上開車!
學過Java多執行緒的應該都知道什麼是鎖,沒學過的也不用擔心,Java中的鎖可以簡單的理解為多執行緒情況下訪問臨界資源的一種執行緒同步機制。
在學習或者使用Java的過程中程序會遇到各種各樣的鎖的概念:公平鎖、非公平鎖、自旋鎖、可重入鎖、偏向鎖、輕量級鎖、重量級鎖、讀寫鎖、互斥鎖等。
蒙了嗎?不要緊!即使你這些都不會也不要緊,因為這個和今天要探討的關係不大,不過如果你作為一個愛學習的小夥伴,這裡也給你準備了一份祕籍:《Java多執行緒核心技術》,一共19篇祝你一臂之力!免費版的不過癮,當然也有收費版的!
一、為什麼要使用分散式鎖
我們在開發應用的時候,如果需要對某一個共享變數進行多執行緒同步訪問的時候,可以使用我們學到的Java多執行緒的18般武藝進行處理,並且可以完美的執行,毫無Bug!
注意這是單機應用,也就是所有的請求都會分配到當前伺服器的JVM內部,然後對映為作業系統的執行緒進行處理!而這個共享變數只是在這個JVM內部的一塊記憶體空間!
後來業務發展,需要做叢集,一個應用需要部署到幾臺機器上然後做負載均衡,大致如下圖:
上圖可以看到,變數A存在JVM1、JVM2、JVM3三個JVM記憶體中(這個變數A主要體現是在一個類中的一個成員變數,是一個有狀態的物件,例如:UserController控制器中的一個整形型別的成員變數),如果不加任何控制的話,變數A同時都會在JVM分配一塊記憶體,三個請求發過來同時對這個變數操作,顯然結果是不對的!即使不是同時發過來,三個請求分別操作三個不同JVM記憶體區域的資料,變數A之間不存在共享,也不具有可見性,處理的結果也是不對的!
如果我們業務中確實存在這個場景的話,我們就需要一種方法解決這個問題!
為了保證一個方法或屬性在高併發情況下的同一時間只能被同一個執行緒執行,在傳統單體應用單機部署的情況下,可以使用Java併發處理相關的API(如ReentrantLock或Synchronized)進行互斥控制。在單機環境中,Java中提供了很多併發處理相關的API。但是,隨著業務發展的需要,原單體單機部署的系統被演化成分散式集群系統後,由於分散式系統多執行緒、多程序並且分佈在不同機器上,這將使原單機部署情況下的併發控制鎖策略失效,單純的Java API並不能提供分散式鎖的能力。為了解決這個問題就需要一種跨JVM的互斥機制來控制共享資源的訪問,這就是分散式鎖要解決的問題!
二、分散式鎖應該具備哪些條件
在分析分散式鎖的三種實現方式之前,先了解一下分散式鎖應該具備哪些條件:
- 在分散式系統環境下,一個方法在同一時間只能被一個機器的一個執行緒執行;
- 高可用的獲取鎖與釋放鎖;
- 高效能的獲取鎖與釋放鎖;
- 具備可重入特性;
- 具備鎖失效機制,防止死鎖;
- 具備非阻塞鎖特性,即沒有獲取到鎖將直接返回獲取鎖失敗。
三、分散式鎖的三種實現方式
目前幾乎很多大型網站及應用都是分散式部署的,分散式場景中的資料一致性問題一直是一個比較重要的話題。分散式的CAP理論告訴我們“任何一個分散式系統都無法同時滿足一致性(Consistency)、可用性(Availability)和分割槽容錯性(Partition tolerance),最多隻能同時滿足兩項。”所以,很多系統在設計之初就要對這三者做出取捨。在網際網路領域的絕大多數的場景中,都需要犧牲強一致性來換取系統的高可用性,系統往往只需要保證“最終一致性”,只要這個最終時間是在使用者可以接受的範圍內即可。
在很多場景中,我們為了保證資料的最終一致性,需要很多的技術方案來支援,比如分散式事務、分散式鎖等。有的時候,我們需要保證一個方法在同一時間內只能被同一個執行緒執行。
基於資料庫實現分散式鎖;
基於快取(Redis等)實現分散式鎖;
基於Zookeeper實現分散式鎖;
儘管有這三種方案,但是不同的業務也要根據自己的情況進行選型,他們之間沒有最好只有更適合!
四、基於資料庫的實現方式
基於資料庫的實現方式的核心思想是:在資料庫中建立一個表,表中包含方法名等欄位,並在方法名欄位上建立唯一索引,想要執行某個方法,就使用這個方法名向表中插入資料,成功插入則獲取鎖,執行完成後刪除對應的行資料釋放鎖。
1)建立一個表:
DROP TABLE IF EXISTS `method_lock`;
CREATE TABLE `method_lock` (
`id` int(11) unsigned NOT NULL AUTO_INCREMENT COMMENT '主鍵',
`method_name` varchar(64) NOT NULL COMMENT '鎖定的方法名',
`desc` varchar(255) NOT NULL COMMENT '備註資訊',
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`),
UNIQUE KEY `uidx_method_name` (`method_name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=utf8 COMMENT='鎖定中的方法';
(2)想要執行某個方法,就使用這個方法名向表中插入資料:
INSERT INTO method_lock (method_name, desc) VALUES ('methodName', '測試的methodName');
因為我們對method_name做了唯一性約束,這裡如果有多個請求同時提交到資料庫的話,資料庫會保證只有一個操作可以成功,那麼我們就可以認為操作成功的那個執行緒獲得了該方法的鎖,可以執行方法體內容。
3)成功插入則獲取鎖,執行完成後刪除對應的行資料釋放鎖:
delete from method_lock where method_name ='methodName';
注意:這只是使用基於資料庫的一種方法,使用資料庫實現分散式鎖還有很多其他的玩法!
使用基於資料庫的這種實現方式很簡單,但是對於分散式鎖應該具備的條件來說,它有一些問題需要解決及優化:
- 因為是基於資料庫實現的,資料庫的可用性和效能將直接影響分散式鎖的可用性及效能,所以,資料庫需要雙機部署、資料同步、主備切換;
- 不具備可重入的特性,因為同一個執行緒在釋放鎖之前,行資料一直存在,無法再次成功插入資料,所以,需要在表中新增一列,用於記錄當前獲取到鎖的機器和執行緒資訊,在再次獲取鎖的時候,先查詢表中機器和執行緒資訊是否和當前機器和執行緒相同,若相同則直接獲取鎖;
- 沒有鎖失效機制,因為有可能出現成功插入資料後,伺服器宕機了,對應的資料沒有被刪除,當服務恢復後一直獲取不到鎖,所以,需要在表中新增一列,用於記錄失效時間,並且需要有定時任務清除這些失效的資料;
- 不具備阻塞鎖特性,獲取不到鎖直接返回失敗,所以需要優化獲取邏輯,迴圈多次去獲取。
- 在實施的過程中會遇到各種不同的問題,為了解決這些問題,實現方式將會越來越複雜;依賴資料庫需要一定的資源開銷,效能問題需要考慮。
五、基於Redis的實現方式
1、選用Redis實現分散式鎖原因:
(1)Redis有很高的效能;
(2)Redis命令對此支援較好,實現起來比較方便
2、使用命令介紹:
(1)SETNX
SETNX key val:當且僅當key不存在時,set一個key為val的字串,返回1;若key存在,則什麼都不做,返回0。
(2)expire
expire key timeout:為key設定一個超時時間,單位為second,超過這個時間鎖會自動釋放,避免死鎖。
(3)delete
delete key:刪除key
在使用Redis實現分散式鎖的時候,主要就會使用到這三個命令。
3、實現思想:
(1)獲取鎖的時候,使用setnx加鎖,並使用expire命令為鎖新增一個超時時間,超過該時間則自動釋放鎖,鎖的value值為一個隨機生成的UUID,通過此在釋放鎖的時候進行判斷。
(2)獲取鎖的時候還設定一個獲取的超時時間,若超過這個時間則放棄獲取鎖。
(3)釋放鎖的時候,通過UUID判斷是不是該鎖,若是該鎖,則執行delete進行鎖釋放。
4、 分散式鎖的簡單實現程式碼:
/**
* 分散式鎖的簡單實現程式碼
* Created by liuyang on 2017/4/20.
*/
public class DistributedLock {
private final JedisPool jedisPool;
public DistributedLock(JedisPool jedisPool) {
this.jedisPool = jedisPool;
}
/**
* 加鎖
* @param lockName 鎖的key
* @param acquireTimeout 獲取超時時間
* @param timeout 鎖的超時時間
* @return 鎖標識
*/
public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {
Jedis conn = null;
String retIdentifier = null;
try {
// 獲取連線
conn = jedisPool.getResource();
// 隨機生成一個value
String identifier = UUID.randomUUID().toString();
// 鎖名,即key值
String lockKey = "lock:" + lockName;
// 超時時間,上鎖後超過此時間則自動釋放鎖
int lockExpire = (int) (timeout / 1000);
// 獲取鎖的超時時間,超過這個時間則放棄獲取鎖
long end = System.currentTimeMillis() + acquireTimeout;
while (System.currentTimeMillis() < end) {
if (conn.setnx(lockKey, identifier) == 1) {
conn.expire(lockKey, lockExpire);
// 返回value值,用於釋放鎖時間確認
retIdentifier = identifier;
return retIdentifier;
}
// 返回-1代表key沒有設定超時時間,為key設定一個超時時間
if (conn.ttl(lockKey) == -1) {
conn.expire(lockKey, lockExpire);
}
try {
Thread.sleep(10);
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retIdentifier;
}
/**
* 釋放鎖
* @param lockName 鎖的key
* @param identifier 釋放鎖的標識
* @return
*/
public boolean releaseLock(String lockName, String identifier) {
Jedis conn = null;
String lockKey = "lock:" + lockName;
boolean retFlag = false;
try {
conn = jedisPool.getResource();
while (true) {
// 監視lock,準備開始事務
conn.watch(lockKey);
// 通過前面返回的value值判斷是不是該鎖,若是該鎖,則刪除,釋放鎖
if (identifier.equals(conn.get(lockKey))) {
Transaction transaction = conn.multi();
transaction.del(lockKey);
List<Object> results = transaction.exec();
if (results == null) {
continue;
}
retFlag = true;
}
conn.unwatch();
break;
}
} catch (JedisException e) {
e.printStackTrace();
} finally {
if (conn != null) {
conn.close();
}
}
return retFlag;
}
}
5、測試剛才實現的分散式鎖
例子中使用50個執行緒模擬秒殺一個商品,使用–運算子來實現商品減少,從結果有序性就可以看出是否為加鎖狀態。
模擬秒殺服務,在其中配置了jedis執行緒池,在初始化的時候傳給分散式鎖,供其使用。
/**
* Created by liuyang on 2017/4/20.
*/
public class Service {
private static JedisPool pool = null;
private DistributedLock lock = new DistributedLock(pool);
int n = 500;
static {
JedisPoolConfig config = new JedisPoolConfig();
// 設定最大連線數
config.setMaxTotal(200);
// 設定最大空閒數
config.setMaxIdle(8);
// 設定最大等待時間
config.setMaxWaitMillis(1000 * 100);
// 在borrow一個jedis例項時,是否需要驗證,若為true,則所有jedis例項均是可用的
config.setTestOnBorrow(true);
pool = new JedisPool(config, "127.0.0.1", 6379, 3000);
}
public void seckill() {
// 返回鎖的value值,供釋放鎖時候進行判斷
String identifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "獲得了鎖");
System.out.println(--n);
lock.releaseLock("resource", identifier);
}
}
模擬執行緒進行秒殺服務:
public class ThreadA extends Thread {
private Service service;
public ThreadA(Service service) {
this.service = service;
}
@Override
public void run() {
service.seckill();
}
}
public class Test {
public static void main(String[] args) {
Service service = new Service();
for (int i = 0; i < 50; i++) {
ThreadA threadA = new ThreadA(service);
threadA.start();
}
}
}
結果如下,結果為有序的:
若註釋掉使用鎖的部分:
public void seckill() {
// 返回鎖的value值,供釋放鎖時候進行判斷
//String indentifier = lock.lockWithTimeout("resource", 5000, 1000);
System.out.println(Thread.currentThread().getName() + "獲得了鎖");
System.out.println(--n);
//lock.releaseLock("resource", indentifier);
}
從結果可以看出,有一些是非同步進行的:
六、基於ZooKeeper的實現方式
ZooKeeper是一個為分散式應用提供一致性服務的開源元件,它內部是一個分層的檔案系統目錄樹結構,規定同一個目錄下只能有一個唯一檔名。基於ZooKeeper實現分散式鎖的步驟如下:
(1)建立一個目錄mylock;
(2)執行緒A想獲取鎖就在mylock目錄下建立臨時順序節點;
(3)獲取mylock目錄下所有的子節點,然後獲取比自己小的兄弟節點,如果不存在,則說明當前執行緒順序號最小,獲得鎖;
(4)執行緒B獲取所有節點,判斷自己不是最小節點,設定監聽比自己次小的節點;
(5)執行緒A處理完,刪除自己的節點,執行緒B監聽到變更事件,判斷自己是不是最小的節點,如果是則獲得鎖。
這裡推薦一個Apache的開源庫Curator,它是一個ZooKeeper客戶端,Curator提供的InterProcessMutex是分散式鎖的實現,acquire方法用於獲取鎖,release方法用於釋放鎖。
優點:具備高可用、可重入、阻塞鎖特性,可解決失效死鎖問題。
缺點:因為需要頻繁的建立和刪除節點,效能上不如Redis方式。
七、總結
上面的三種實現方式,沒有在所有場合都是完美的,所以,應根據不同的應用場景選擇最適合的實現方式。
在分散式環境中,對資源進行上鎖有時候是很重要的,比如搶購某一資源,這時候使用分散式鎖就可以很好地控制資源。
當然,在具體使用中,還需要考慮很多因素,比如超時時間的選取,獲取鎖時間的選取對併發量都有很大的影響,上述實現的分散式鎖也只是一種簡單的實現,主要是一種思想,以上包括文中的程式碼可能並不適用於正式的生產環境,只做入門參考!
參考文章:
1、https://yq.aliyun.com/articles/60663