51nod1472取餘最大值 分治
阿新 • • 發佈:2018-12-11
Description 有一個長度為n的陣列a,現在要找一個長度至少為2的子段,求出這一子段的和,然後減去最大值,然後對k取餘結果為0。 問這樣的子段有多少個。
Sample Input 4 3 1 2 3 4
Sample Output 3
考慮分治, 對於最大值分情況討論一下即可。
#include <cstdio> #include <cstring> using namespace std; typedef long long LL; int _max(int x, int y) {return x > y ? x : y;} int read() { int s = 0, f = 1; char ch = getchar(); while(ch < '0' || ch > '9') {if(ch == '-') f = -1; ch =getchar();} while(ch >= '0' && ch <= '9') s = s * 10 + ch - '0', ch = getchar(); return s * f; } int n, k, a[310000]; LL ans, s1[1100000], s2[1100000]; int gg(LL x) {return (x % k + k) % k;} void solve(int l, int r) { if(l >= r) return ; int mid = (l + r) / 2; solve(l, mid); solve(mid + 1, r); LL maxx = 0, sum = 0; for(int i = mid; i >= l; i--) { sum += a[i], maxx = _max(maxx, a[i]); s1[gg(sum - maxx)]++; } LL cc = mid; maxx = 0, sum = 0; LL uu = 0, ii = 0; for(int i = mid + 1; i <= r; i++) { sum += a[i], maxx = _max(maxx, a[i]); while(a[cc] <= maxx && cc >= l) uu += a[cc], ii = _max(ii, a[cc]), cc--, s2[gg(uu)]++, s1[gg(uu - ii)]--; ans += s2[gg(k - (sum - maxx))]; ans += s1[gg(k - sum)]; } maxx = sum = 0; for(int i = mid; i >= l; i--) { sum += a[i], maxx = _max(maxx, a[i]); s1[gg(sum - maxx)] = 0; s2[gg(sum)] = 0; } } int main() { n = read(), k = read(); for(int i = 1; i <= n; i++) a[i] = read(); CDQ(1, n); printf("%lld\n", ans); return 0; }