Java 效能優化的五大技巧
要對你的 Java 程式碼進行優化,需要理解 Java 不同要素之間的相互作用,以及它是如何與其執行時的作業系統進行互動的。使用下面這五個技巧和資源,開始學習如何分析和優化你的程式碼吧。
在我們開始之前,你也許會擔心許可的問題。Java 為 Oracle 公司所有,遵循 Oracle 的 BCL 許可,該許可證不是一個免費/開源許可證。即便如此, 仍然有許多開源專案由 Oracle 公司的 Java 開發。 OpenJDK 是 Java 平臺自由軟體的實現,遵循 GPL v2 許可。(更多資訊請參見維基百科 Free Java implementations。)
讓我們開始吧
效能優化取決於多個因素,包括垃圾收集、虛擬機器和底層作業系統(OS)設定。有多個工具可供開發人員進行分析和優化時使用,你可以通過閱讀 Java Tools for Source Code Optimization and Analysis 來學習和使用它們。如果你正苦苦掙扎於術語和 Java 的原理,可以先去檢視 Livecoding Java category page,上面有直播,存檔的視訊,以及一些其他有用的資訊。
視情況而定”
必須要明白的是,沒有兩個應用程式可以使用相同的優化方式,也沒有完美的優化 java 應用程式的參考路徑。使用最佳實踐並且堅持採用適當的方式處理效能優化。想要達到真正最高的效能優化,你作為一個 Java 開發人員,需要對 Java 虛擬機器(JVM)和底層作業系統有正確的理解:
JVM 和底層作業系統:Java 虛擬機器是任何 Java 程式的家。閱讀 JVM internals guide 瞭解更多有關於 JVM 內部和作業系統差異的內容。
JVM 分佈模型:Java 分佈模型為您的應用程式處理多個JVM例項。分佈模型提高了應用程式的效能,因為它獲得更多的資源來工作。你可以用兩種方法繼續優化。第一種方法是在一個堆大小為2GB或8GB的單伺服器執行多個 JVM。第二種方法是在多個伺服器上執行單個 JVM。正確方法的選擇取決於多個因素,包括可用性和響應性。
JVM 體系結構:選擇正確的 JVM 體系結構對於效能來說是很重要的。你可以選擇 64 位或者 32 位的 JVM 機器。 一般來說,32 位 JVM 的效能比它對應的 64 位 JVM 要好。 只有當你需要的堆大小大於 3 GB 時,才選擇 64 位的 JVM。
清楚了效能優化和其要素,現在我們可以專注於那些可以優化你的Java應用的技巧。
1. 調整垃圾收集(GC)
由於垃圾收集的複雜性,很難發現你的應用的準確性能。不過,如果你真的想優化你的應用,你應該相應地處理垃圾收集。通用的準則是調整GC設定並同時執行效能分析。
一旦你對結果感到滿意,你可以停止該過程並尋求其他優化方式。確保除了在平均事務處理時間之外,你還留心了異常值。這些異常值是造成Java應用緩慢的真正的罪魁禍首並且很難找到。
此外,你要明白應用執行期間效能下降的效應。在每個CPU時鐘內,緩慢的操作是可以忽略的,但在每個資料庫事務中的緩慢操作則是非常昂貴的消耗。但是你應該根據效能短板選擇你的優化策略,並根據工作負載來優化應用。
2. 正確地選擇適合你的GC演算法
讓我們更深入地探討GC優化。畢竟,GC優化是要處理的整個優化問題中最基本的。目前,Java中有四種供你選擇的垃圾收集演算法。每種演算法滿足不同的需求,因此你要選擇適合你的需求的。很多開發人員正是因為不瞭解GC演算法而沒有優化他們的應用。
這四個演算法分別是序列回收器,並行/吞吐量回收器,CMS回收器和G1回收器。想要了解更多關於每種垃圾收集器的資訊及它們是如何工作的,請檢視這篇來自Takipi部落格的非常棒的文章Garbage Collectors—Serial vs. Parallel vs. CMS vs. G1。這篇文章同時還討論了Java8對GC演算法的影響及其他細節上的改變。
讓我們再回到GC演算法上,根據Understanding Java Garbage Collection這篇文章所述,併發標記和清除GC(即"CMS")演算法才是適合網路服務端應用的最佳演算法。並行GC演算法則適合那些內部可預測的應用。
G1和CMS是併發操作的理想選擇,但仍然會引起應用頻繁停頓。實際的選擇取決於你如何取捨。舉例來說,儘管選擇並行演算法會帶來更長的GC停頓時間,但相較於其他GC演算法,選擇並行演算法仍是一個好主意。
3.Java 堆
Java記憶體堆在迎合記憶體需求方面擔任了至關重要角色。通常更好的做法是,初始時分配最小的堆,然後通過持續的測試不斷增加它的大小。大多數時候優化問題都可以通過增加堆的大小解決,但如果存在大量的GC開銷,則該解決方案就不起作用。
GC開銷還會使吞吐量急劇下降,進而使得應用極其緩慢。此外,及早調整GC可以幫助你避免堆大小分配的問題。開始的時候,你可以選擇任何1GB到8GB的堆大小。當你選擇正確的堆大小,老生代和新生代物件的概念也就不需要了。
總而言之,堆大小應該取決於老生代和新生代物件的比率,之前的GC優化和物件集合(即所有物件佔用的記憶體大小)。
4. 關鍵應用優化
關鍵程式碼優化是優化你的Java應用最好的方式。如果你的應用對GC和堆優化沒有反應,那麼最好是做架構改進並關注於你的應用是如何處理資訊的。使用聰明的演算法並管理好物件就能解決大量的問題,包括記憶體碎片、堆大小問題和垃圾收集的問題。
5.使用最優的函式
Java提供了多個函式來提升演算法效率。如果你使用StringBuilder代替簡單的String,你可以得到微乎其微的效能提升。不過,我們還有其他方式在程式碼層面進行優化。讓我們看看下面這些優化方法。
使用StringBuilder代替+操作符。
避免使用iterator()。
多使用棧帶來的好處。
避免使用正則表示式,使用Apache Commons Lang作為代替。
遠離遞迴。遞迴會佔用大量資源!
要想檢視更多關於程式碼優化的東西,請閱讀《十個最簡單的Java效能優化技巧》。
總結
Java的效能優化可是一個大課題,這片文章也只是拋磚引玉。如果您認為文章還需要新增補充,別忘了在下面的評論中分享您的觀點。
原文:Dr. Michael J. Garbade
翻譯:KeYIKeYI,learner,唯恐有聞
更多資料可關注二維碼