TensorFlow學習筆記(6) TensorFlow最佳實踐樣例程式
阿新 • • 發佈:2018-12-12
在第三篇中編寫了一個程式來解決MNIST問題,這是一個沒有持久化訓練好的模型。當程式退出時,訓練好的模型就再也無法使用了,這導致得到的模型無法被重用。結合變數管理機制及模型持久化機制,對該程式進行進一步的優化重構。
優化重構之後的程式分為三個:第一個是mnist_inference.py,定義前向傳播的過程及引數;第二個是mnist_train.py,定義神經網路的訓練過程;第三個是mnist_eval.py,定義神經網路的測試過程。
mnist_inference.py
無論在訓練時還是測試時,都可以直接呼叫inference這個函式,而不用關心具體的神經網路結構。import tensorflow as tf #定義神經網路結構相關的引數 INPUT_NODE = 784 OUTPUT_NODE = 10 LAYER1_NODE = 500 #定義函式建立或者載入變數,並生成正則化損失加入損失集合 def get_weight_variable(shape, regularizer): weights = tf.get_variable('weights', shape, initializer=tf.truncated_normal_initializer(stddev=0.1)) if regularizer != None: tf.add_to_collection('losses', regularizer(weights)) return weights #定義神經網路的前向傳播過程 def inference(input_tensor, regularizer): with tf.variable_scope('layer1'): weights = get_weight_variable([INPUT_NODE, LAYER1_NODE], regularizer) biases = tf.get_variable('biases', [LAYER1_NODE], initializer=tf.constant_initializer(0.1)) layer1 = tf.nn.relu(tf.matmul(input_tensor, weights) + biases) with tf.variable_scope('layer2'): weights = get_weight_variable([LAYER1_NODE, OUTPUT_NODE], regularizer) biases = tf.get_variable('biases', [OUTPUT_NODE], initializer=tf.constant_initializer(0.1)) layer2 = tf.matmul(layer1, weights) + biases return layer2
mnist_train.py
在訓練過程中,每1000輪輸出一次在當前訓練batch上損失函式的大小來估計訓練的效果。並且每1000輪儲存一次訓練好的模型,這樣通過一個單獨的測試程式,更加方便地在滑動平均模型上做測試。import os import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference # 配置神經網路的引數 BATCH_SIZE = 100 LEARNING_RATE_BASE = 0.8 LEARNING_RATE_DECAY = 0.99 REGULARIZATION_RATE = 0.0001 #描述模型複雜度的正則化項在損失函式中的係數 TRAINING_STEPS = 30000 MOVING_AVERAGE_DECAY = 0.99 #滑動平均衰減率 #模型儲存的路徑和檔名 MODEL_SAVE_PATH = '/mnist_model/' MODEL_SAVE_NAME = 'mnist_model.ckpt' def train(mnist): x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') regularizer = tf.contrib.layers.l2_regularizer(REGULARIZATION_RATE) #直接使用mnist_inference.py中定義的前向傳播結果 y = mnist_inference.inference(x, regularizer) global_step = tf.Variable(0, trainable=False) # 生成一個滑動平均的類,並在所有變數上使用滑動平均 variables_averages = tf.train.ExponentialMovingAverage(MOVING_AVERAGE_DECAY, global_step) variables_averages_op = variables_averages.apply(tf.trainable_variables()) # 計算交叉熵及當前barch中的所有樣例的交叉熵平均值,並求出損失函式 cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=y, labels=tf.argmax(y_, 1)) cross_entropy_mean = tf.reduce_mean(cross_entropy) loss = cross_entropy_mean + tf.add_n(tf.get_collection('losses')) # 定義指數衰減式的學習率以及訓練過程 learning_rate = tf.train.exponential_decay(LEARNING_RATE_BASE, global_step, mnist.train.num_examples / BATCH_SIZE, LEARNING_RATE_DECAY) train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss, global_step=global_step) train_op = tf.group(train_step, variables_averages_op) # 打包 with tf.control_dependencies([train_step, variables_averages_op]): train_op = tf.no_op(name='train') #初始化TF持久化類 saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for i in range(TRAINING_STEPS): xs, ys = mnist.train.next_batch(BATCH_SIZE) _, loss_value, step = sess.run([train_op, loss, global_step], feed_dict={x: xs, y_: ys}) if i%1000 == 0: print('After %d training steps, loss on training batch is %g'% (step, loss_value)) saver.save(sess, os.path.join(MODEL_SAVE_PATH, MODEL_SAVE_NAME), global_step=global_step) def main(argv=None): mnist = input_data.read_data_sets("MNIST_data", one_hot=True) train(mnist) if __name__ =='__main__': tf.app.run()
mnist_eval.py
測試程式每隔10s執行一次,每次執行都是讀取最新儲存地模型,並驗證其正確率。import time import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import mnist_inference import mnist_train EVAL_INTERVAL_SECS = 10 def evaluate(mnist): with tf.Graph().as_default() as g: x = tf.placeholder(tf.float32, [None, mnist_inference.INPUT_NODE], name='x-input') y_ = tf.placeholder(tf.float32, [None, mnist_inference.OUTPUT_NODE], name='y-input') validate_feed = {x: mnist.validation.images, y_: mnist.validation.labels} y = mnist_inference.inference(x, None) correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) # 判斷兩張量的每一維是否相等,相等返回True,不等返回False accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # cast將布林值轉化為float32 求均值即得正確率 #通過變數重新命名的方式來載入模型,這樣就不需要調動滑動平均的函式來求平均值 variables_averages = tf.train.ExponentialMovingAverage(mnist_train.MOVING_AVERAGE_DECAY) variables_to_restore = variables_averages.variables_to_restore() saver = tf.train.Saver(variables_to_restore) #每隔10s呼叫一次計算正確率的過程以檢測訓練過程中正確率的變化 while True: with tf.Session() as sess: #tf.train.get_checkpoint_state通過checkpoint檔案自動找到目錄中最新模型的檔名 ckpt = tf.train.get_checkpoint_state(mnist_train.MODEL_SAVE_PATH) if ckpt and ckpt.model_checkpoint_path: #ckpt.model_checkpoint_path:表示模型儲存的位置,不需要提供模型的名字,它會去檢視checkpoint檔案,看看最新的是誰,叫做什麼。 saver.restore(sess, ckpt.model_checkpoint_path) global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] accuracy_score = sess.run(accuracy, feed_dict=validate_feed) print('After %s training steps, validation accuracy = %g' % (global_step, accuracy_score)) else: print('No checkpoint file found') return time.sleep(EVAL_INTERVAL_SECS) def main(argv=None): mnist = input_data.read_data_sets("MNIST_data", one_hot=True) evaluate(mnist) if __name__ == '__main__': tf.app.run()
源自:Tensorflow 實戰Google深度學習框架_鄭澤宇