Spark 小根堆(TreeSet)實現TopN問題-------基於上一篇文章的優化
阿新 • • 發佈:2018-12-12
第三步優化:假如資料量非常大的話,toList方法會產生記憶體溢位,使用treeSet方法可以解決 treeset既可以實現排序,還能有效的控制輸出的大小。
package day02 import java.net.URL import org.apache.spark.rdd.RDD import org.apache.spark.{Partitioner, SparkConf, SparkContext} import scala.collection.mutable /** * @author WangLeiKai * 2018/9/27 18:53 */ object FavSubTeacher4 { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf().setAppName("FavSubTeacher4").setMaster("local[*]") val sc = new SparkContext(conf) val lines = sc.textFile("F:\\上課畫圖\\spark 02\\課件與程式碼\\teacher(1).log") val subjectAndTeacher: RDD[((String, String), Int)] = lines.map(line => { val teacher: String = line.substring(line.lastIndexOf("/") + 1) val host = new URL(line).getHost val subject = host.substring(0, host.indexOf(".")) ((subject, teacher), 1) }) //取到所有的科目 val subjects: Array[String] = subjectAndTeacher.map(_._1._1).distinct().collect() val sbPartitioner: SubjectPartitioner2 = new SubjectPartitioner2(subjects) //reduceByKey方法 引數可以是分割槽器,如果沒有的話 使用的是預設的 val reduced: RDD[((String, String), Int)] = subjectAndTeacher.reduceByKey(sbPartitioner,_+_) val mapped: RDD[(String, (String, Int))] = reduced.map(tp => { val sub = tp._1._1 val name = tp._1._2 val num = tp._2 (sub, (name, num)) }) val grouped: RDD[(String, Iterable[(String, Int)])] = mapped.groupByKey() val retRDD:RDD[(String, Iterable[(String, Int)])] = grouped.map(tuple => { var ts = new mutable.TreeSet[(String, Int)]()(new Ordering[(String, Int)]{ override def compare(x: (String, Int), y: (String, Int)): Int = { val xField = x._2.toInt val yField = y._2.toInt -(xField - yField) } }) val subject = tuple._1 val nameNums = tuple._2 for(nameNum <- nameNums) { // 新增到treeSet中 ts.add(nameNum) if(ts.size > 2) { ts = ts.dropRight(1) } } (subject, ts) }) /* object MyOrdering extends Ordering[(String, Int)]{ override def compare(x: (String, Int), y: (String, Int)): Int = { val xField = x._2.toInt val yField = y._2.toInt xField - yField } }*/ val tuples = retRDD.collect() tuples.foreach(println) sc.stop() } } class SubjectPartitioner2(sbs: Array[String]) extends Partitioner{ //map裡放的是科目和對應的分割槽號 0 1 2 private val rules: mutable.HashMap[String, Int] = new mutable.HashMap[String,Int]() var index = 0 for(sb <- sbs){ rules.put(sb,index) index += 1 } //返回分割槽的數量 下一個RDD有多少個分割槽 override def numPartitions: Int = sbs.length //這裡的key是一個元組 override def getPartition(key: Any): Int = { //獲取學科名稱 val subject: String = key.asInstanceOf[(String,String)]._1 //根據規則計算分割槽編號 rules(subject) } }
可以使用匿名內部類實現,也可以另外寫一繼承Ordering的類
package day02 import java.net.URL import org.apache.spark.rdd.RDD import org.apache.spark.{Partitioner, SparkConf, SparkContext} import scala.collection.mutable /** * @author WangLeiKai * 2018/9/27 18:53 */ object FavSubTeacher5 { def main(args: Array[String]): Unit = { val conf: SparkConf = new SparkConf().setAppName("FavSubTeacher5").setMaster("local[*]") val sc = new SparkContext(conf) val lines = sc.textFile("F:\\上課畫圖\\spark 02\\課件與程式碼\\teacher(1).log") val subjectAndTeacher: RDD[((String, String), Int)] = lines.map(line => { val teacher: String = line.substring(line.lastIndexOf("/") + 1) val host = new URL(line).getHost val subject = host.substring(0, host.indexOf(".")) ((subject, teacher), 1) }) //取到所有的科目 val subjects: Array[String] = subjectAndTeacher.map(_._1._1).distinct().collect() val sbPartitioner: SubjectPartitioner3 = new SubjectPartitioner3(subjects) //reduceByKey方法 引數可以是分割槽器,如果沒有的話 使用的是預設的 val reduced: RDD[((String, String), Int)] = subjectAndTeacher.reduceByKey(sbPartitioner,_+_) val mapped: RDD[(String, (String, Int))] = reduced.map(tp => { val sub = tp._1._1 val name = tp._1._2 val num = tp._2 (sub, (name, num)) }) val grouped: RDD[(String, Iterable[(String, Int)])] = mapped.groupByKey() val retRDD:RDD[(String, Iterable[(String, Int)])] = grouped.map(tuple => { var ts = new mutable.TreeSet[(String, Int)]()(new MyOrdering()) val subject = tuple._1 val nameNums = tuple._2 for(nameNum <- nameNums) { // 新增到treeSet中 ts.add(nameNum) if(ts.size > 2) { ts = ts.dropRight(1) } } (subject, ts) }) val tuples = retRDD.collect() tuples.foreach(println) sc.stop() } } class SubjectPartitioner3(sbs: Array[String]) extends Partitioner{ //map裡放的是科目和對應的分割槽號 0 1 2 private val rules: mutable.HashMap[String, Int] = new mutable.HashMap[String,Int]() var index = 0 for(sb <- sbs){ rules.put(sb,index) index += 1 } //返回分割槽的數量 下一個RDD有多少個分割槽 override def numPartitions: Int = sbs.length //這裡的key是一個元組 override def getPartition(key: Any): Int = { //獲取學科名稱 val subject: String = key.asInstanceOf[(String,String)]._1 //根據規則計算分割槽編號 rules(subject) } } //注意 該類要放在object 的外面 class MyOrdering extends Ordering[(String, Int)]{ override def compare(x: (String, Int), y: (String, Int)): Int = { val xField = x._2.toInt val yField = y._2.toInt xField - yField } }