機器學習-字典資料抽取
阿新 • • 發佈:2018-12-12
字典資料抽取
from sklearn.feature_extraction import DictVectorizer def dictverc(): """ 字典資料抽取 """ # 例項化 dict = DictVectorizer() # 呼叫fit_transform data = dict.fit_transform([{'city':'北京','temperature':100},{'city':'上海','temperature':90},{'city':'青島','temperature':80}]); # 輸出 print(data) # 執行 dictverc()
結果:
(0, 1) 1.0
(0, 3) 100.0
(1, 0) 1.0
(1, 3) 90.0
(2, 2) 1.0
(2, 3) 80.0
Sparse矩陣輸出
from sklearn.feature_extraction import DictVectorizer def dictverc(): """ 字典資料抽取 """ # 例項化 dict = DictVectorizer(sparse=False) # 呼叫fit_transform data = dict.fit_transform([{'city':'北京','temperature':100},{'city':'上海','temperature':90},{'city':'青島','temperature':80}]); # 輸出 print(data) # 執行 dictverc()
結果:
[[ 0. 1. 0. 100.]
[ 1. 0. 0. 90.]
[ 0. 0. 1. 80.]]