Leetcode 133. Clone Graph
133. Clone Graph
題目
Given the head of a graph, return a deep copy (clone) of the graph. Each node in the graph contains a label
(int
) and a list (List[UndirectedGraphNode]
) of its neighbors
. There is an edge between the given node and each of the nodes in its neighbors.
OJ’s undirected graph serialization (so you can understand error output):
Nodes are labeled uniquely.
We use #
as a separator for each node, and ,
as a separator for node label and each neighbor of the node.
As an example, consider the serialized graph {0,1,2#1,2#2,2}
.
The graph has a total of three nodes, and therefore contains three parts as separated by #
.
- First node is labeled as
0
0
to both nodes1
and2
. - Second node is labeled as
1
. Connect node1
to node2
. - Third node is labeled as
2
. Connect node2
to node2
(itself), thus forming a self-cycle.
Visually, the graph looks like the following:
1
/ \
/ \
0 --- 2
/ \
\_/
Note: The information about the tree serialization is only meant so that you can understand error output if you get a wrong answer. You don’t need to understand the serialization to solve the problem.
解題思路
遍歷原圖,遇到未遍歷過的節點時,複製一個新節點。保持該節點在原圖中的關係與新節點在新圖中的關係相對應,將新節點加入新圖中。為了在新圖中快速找到與原圖中相應的節點,可以用一個 unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> dict
儲存對應的節點。
方法一:BFS
(1)如果原圖頭節點為空,則返回NULL;
(2)先複製一個原圖的頭節點,加入dict中,作為新圖的頭節點;
(3)建立一個佇列,將原圖頭節點加入佇列;
(4)直到佇列未空,進行如下迴圈:取出隊首節點(該節點為原圖遍歷到的節點,而dict[隊首節點]
則是新圖與該節點對應的節點),對於該節點的每個子節點,若dict中沒有對應節點(dict[子節點]
不存在),則說明該節點之前未遍歷到,則複製一個該子節點,加入dict中,並將該子節點加入佇列中,將dict[子節點]
加入到新圖中與隊首節點對應的節點的位元組點列表中。
(5)在第(3)步中,迴圈結束後,原圖每個節點都經歷過BFS,每遍歷到一個新節點,都會複製一個節點加入新圖中,並且維持新圖中節點的相鄰關係,因此(3)步驟結束後,新圖便是原圖的複製。將新圖中對應的頭節點dict[原圖頭節點]
返回即可。
程式碼如下:
/**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if(!node) return NULL;
unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> dict;
queue<UndirectedGraphNode*> q;
q.push(node);
dict[node] = new UndirectedGraphNode(node->label);
while(!q.empty()){
UndirectedGraphNode* cur = q.front();
q.pop();
for( auto next: cur->neighbors){
if( dict.find(next) == dict.end()){
dict[next] = new UndirectedGraphNode(next->label);
q.push(next);
}
dict[cur]->neighbors.push_back(dict[next]);
}
}
return dict[node];
}
};
方法二:DFS
(1)如果原圖頭節點為空,則返回NULL;
(2)建立一個新的dict,以原圖頭節點為引數呼叫dfs遞迴函式,該函式引數有一個節點,返回一個從該節點開始深度優先拷貝原圖後的圖的首節點。
(3)進行如下遞迴:如果dict中有對應引數node的節點,則直接返回dict[node]
是,否則建立node的拷貝節點,加入dict中,對於node的每個子節點,用子節點呼叫dfs函式後返回的是從子節點開始深度優先拷貝原圖後的圖的首節點,將每個位元組點呼叫dfs後返回的節點加入dict[node]
的子節點列表中,則dict[node]
則是從node開始深度優先拷貝原圖後的圖的首節點,將dict[node]
返回。
(4)用原圖頭節點呼叫dfs函式後返回的即是拷貝原圖後的圖的首節點。
程式碼如下:
/**
* Definition for undirected graph.
* struct UndirectedGraphNode {
* int label;
* vector<UndirectedGraphNode *> neighbors;
* UndirectedGraphNode(int x) : label(x) {};
* };
*/
class Solution {
public:
UndirectedGraphNode *cloneGraph(UndirectedGraphNode *node) {
if(!node) return NULL;
unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> dict;
return dfs(dict, node);
}
UndirectedGraphNode* dfs(unordered_map<UndirectedGraphNode*, UndirectedGraphNode*> &dict, UndirectedGraphNode* node){
if( dict.find(node) != dict.end()) return dict[node];
dict[node] = new UndirectedGraphNode(node->label);
for( auto next: node->neighbors)
dict[node]->neighbors.push_back(dfs(dict, next));
return dict[node];
}
};