1. 程式人生 > >【Numberical Optimization】4 Trust-Region Methods (zen學習筆記)

【Numberical Optimization】4 Trust-Region Methods (zen學習筆記)

TR方法比LS方法收斂速度快

TR方法中有幾個引數需要選擇:

  1. 近似模型 m_{k}

  2. 可信賴區域  \Delta _{k}
  3. 求解引數  p_{k}
  • \mathbf{m_{k}}

when \alpha =1,Taylor-series expansion of f around x_{k},which is 

                                          f(x_{k}+p)=f({x_{k}})+\bigtriangledown f(x_{k})p+\frac{1}{2}p^{T}\bigtriangledown ^{2}f(x+tp)p 

where  t is some scalar in the interval (0,1).

By using an approximation B_{k} to the Hessian in the second-order term:

                                                          m_{k}(p)=f_{k}+g_{k}^{T}p+\frac{1}{2}p^{T}B_{k}p

 

 Then we seek a solution of subproblem:

                                                        {\color{Blue} min } m_{k}(p)=f_{k}+g_{k}^{T}p+\frac{1}{2}p^{T}B_{k}p 

                                                               s.t. \left \| p \right \| <\bigtriangleup _{k}

The difference between  m_{k}(p)  and f(x_{k}+p) is O(\left \| p \right \|^{2}) , which is small when p is small.

  •  \mathbf{\bigtriangleup _{k}}

 Let 

                                                                \rho _{k}=\frac{f(x_{k})-f(x_{k}+p_{k})}{m_{k}(0)-m_{k}(p_{k})}

1.if  \rho _{k} is negative , the newe value  f_{k+1}  is greater than f_{k} ,  so the step must be rejected.,because step  p_{k}} is  obtained  by minimizing the model  m_{k} . 

2.if  \rho _{k}  is close to 1, so it safe to expand the trust region.

3.if  \rho _{k}  is postive but significantly smaller than 1,we do not alter the trust region.

4.if  \rho _{k}  is close to 0, we shrink the trust region.

  • 專注於求解子問題: 

We sometimes drop the interation subscript k and restate the problem as follows:

                                                        {\color{Cyan} min} m(p)=f+g^{T}p+\frac{1}{2}p^{T}Bp       

                                                                s.t. \left \| p \right \|\leq \bigtriangleup                             

if and only if

                                                          

 (4.8b) is a complementarity condition that states at least one of \lambda  and (\bigtriangleup -\left \| p^{*} \right \|)  must be  0.

                        

When   \bigtriangleup =\bigtriangleup _{1}  ,p^{*3}  lies strictly inside the trust region,we must have \lambda =0 .

When   \bigtriangleup =\bigtriangleup _{2} or  \bigtriangleup _{3},  we have   \bigtriangleup -\left \| p^{*} \right \|=0,  then  we get 

                                                            \lambda p^{*}=-Bp^{*}-g=-\bigtriangledown m(p^{*})

 Finally we get p.

4.1  Algotithms based on  the Cauchy point