1. 程式人生 > >各種排序演算法的時間複雜度

各種排序演算法的時間複雜度

選擇排序、快速排序、希爾排序、堆排序不是穩定的排序演算法,

氣泡排序、插入排序、歸併排序和基數排序是穩定的排序演算法。

排序演算法不穩定的含義是:在排序之前,有兩個數相等. 但是在排序結束之後,它們兩個有可能改變順序.

比如說:
 在一個待排序佇列中,A和B相等,且A排在B的前面,而排序之後,A排在了B的後面.這個時候,我們說這種演算法是不穩定的.
(只要有這種可能性,我們就說演算法是不穩定的.)
注: 演算法的不穩定性,與所用的語言沒有關係的.

     首先,排序演算法的穩定性大家應該都知道,通俗地講就是能保證排序前2個相等的數其在序列的前後位置順序和排序後它們兩個的前後位置順序相同。在簡單形式化一下,如果Ai = Aj, Ai原來在位置前,排序後Ai還是要在Aj位置前。

常見的排序演算法的穩定性

(1)氣泡排序

        氣泡排序就是把小的元素往前調或者把大的元素往後調。比較是相鄰的兩個元素比較,交換也發生在這兩個元素之間。所以,如果兩個元素相等,我想你是不會再無聊地把他們倆交換一下的;如果兩個相等的元素沒有相鄰,那麼即使通過前面的兩兩交換把兩個相鄰起來,這時候也不會交換,所以相同元素的前後順序並沒有改變,所以氣泡排序是一種穩定排序演算法。

(2)選擇排序

      選擇排序是給每個位置選擇當前元素最小的,比如給第一個位置選擇最小的,在剩餘元素裡面給第二個元素選擇第二小的,依次類推,直到第n-1個元素,第n個元素不用選擇了,因為只剩下它一個最大的元素了。那麼,在一趟選擇,如果當前元素比一個元素小,而該小的元素又出現在一個和當前元素相等的元素後面,那麼交換後穩定性就被破壞了。比較拗口,舉個例子,序列5 8 5 2 9, 我們知道第一遍選擇第1個元素5會和2交換,那麼原序列中2個5的相對前後順序就被破壞了,所以選擇排序不是一個穩定的排序演算法。

(3)插入排序
     插入排序是在一個已經有序的小序列的基礎上,一次插入一個元素。當然,剛開始這個有序的小序列只有1個元素,就是第一個元素。比較是從有序序列的末尾開始,也就是想要插入的元素和已經有序的最大者開始比起,如果比它大則直接插入在其後面,否則一直往前找直到找到它該插入的位置。如果碰見一個和插入元素相等的,那麼插入元素把想插入的元素放在相等元素的後面。所以,相等元素的前後順序沒有改變,從原無序序列出去的順序就是排好序後的順序,所以插入排序是穩定的。

(4)快速排序
    快速排序有兩個方向,左邊的i下標一直往右走,當a[i] <= a[center_index],其中center_index是中樞元素的陣列下標,一般取為陣列第0個元素。而右邊的j下標一直往左走,當a[j] > a[center_index]。如果i和j都走不動了,i <= j, 交換a[i]和a[j],重複上面的過程,直到i>j。 交換a[j]和a[center_index],完成一趟快速排序。在中樞元素和a[j]交換的時候,很有可能把前面的元素的穩定性打亂,比如序列為 5 3 3 4 3 8 9 10 11, 現在中樞元素5和3交換就會把元素3的穩定性打亂,所以快速排序是一個不穩定的排序演算法,不穩定發生在中樞元素和a[j]交換的時刻。

(5)歸併排序
    歸併排序是把序列遞迴地分成短序列,遞迴出口是短序列只有1個元素(認為直接有序)或者2個序列(1次比較和交換),然後把各個有序的段序列合併成一個有序的長序列,不斷合併直到原序列全部排好序。可以發現,在1個或2個元素時,1個元素不會交換,2個元素如果大小相等也沒有人故意交換,這不會破壞穩定性。那麼,在短的有序序列合併的過程中,穩定是是否受到破壞?沒有,合併過程中我們可以保證如果兩個當前元素相等時,我們把處在前面的序列的元素儲存在結果序列的前面,這樣就保證了穩定性。所以,歸併排序也是穩定的排序演算法。

(6)基數排序
   基數排序是按照低位先排序,然後收集;再按照高位排序,然後再收集;依次類推,直到最高位。有時候有些屬性是有優先順序順序的,先按低優先順序排序,再按高優先順序排序,最後的次序就是高優先順序高的在前,高優先順序相同的低優先順序高的在前。基數排序基於分別排序,分別收集,所以其是穩定的排序演算法。

(7)希爾排序(shell)
    希爾排序是按照不同步長對元素進行插入排序,當剛開始元素很無序的時候,步長最大,所以插入排序的元素個數很少,速度很快;當元素基本有序了,步長很小,插入排序對於有序的序列效率很高。所以,希爾排序的時間複雜度會比o(n^2)好一些。由於多次插入排序,我們知道一次插入排序是穩定的,不會改變相同元素的相對順序,但在不同的插入排序過程中,相同的元素可能在各自的插入排序中移動,最後其穩定性就會被打亂,所以shell排序是不穩定的。

(8)堆排序
   我們知道堆的結構是節點i的孩子為2*i和2*i+1節點,大頂堆要求父節點大於等於其2個子節點,小頂堆要求父節點小於等於其2個子節點。在一個長為n的序列,堆排序的過程是從第n/2開始和其子節點共3個值選擇最大(大頂堆)或者最小(小頂堆),這3個元素之間的選擇當然不會破壞穩定性。但當為n/2-1, n/2-2, ...1這些個父節點選擇元素時,就會破壞穩定性。有可能第n/2個父節點交換把後面一個元素交換過去了,而第n/2-1個父節點把後面一個相同的元素沒有交換,那麼這2個相同的元素之間的穩定性就被破壞了。所以,堆排序不是穩定的排序演算法

1 快速排序(QuickSort)

快速排序是一個就地排序,分而治之,大規模遞迴的演算法。從本質上來說,它是歸併排序的就地版本。快速排序可以由下面四步組成。

(1) 如果不多於1個數據,直接返回。
(2) 一般選擇序列最左邊的值作為支點資料。
(3) 將序列分成2部分,一部分都大於支點資料,另外一部分都小於支點資料。
(4) 對兩邊利用遞迴排序數列。

快速排序比大部分排序演算法都要快。儘管我們可以在某些特殊的情況下寫出比快速排序快的演算法,但是就通常情況而言,沒有比它更快的了。快速排序是遞迴的,對於記憶體非常有限的機器來說,它不是一個好的選擇。 

2 歸併排序(MergeSort)

歸併排序先分解要排序的序列,從1分成2,2分成4,依次分解,當分解到只有1個一組的時候,就可以排序這些分組,然後依次合併回原來的序列中,這樣就可以排序所有資料。合併排序比堆排序稍微快一點,但是需要比堆排序多一倍的記憶體空間,因為它需要一個額外的陣列。

3 堆排序(HeapSort)

堆排序適合於資料量非常大的場合(百萬資料)。

堆排序不需要大量的遞迴或者多維的暫存陣列。這對於資料量非常巨大的序列是合適的。比如超過數百萬條記錄,因為快速排序,歸併排序都使用遞迴來設計演算法,在資料量非常大的時候,可能會發生堆疊溢位錯誤。

堆排序會將所有的資料建成一個堆,最大的資料在堆頂,然後將堆頂資料和序列的最後一個數據交換。接下來再次重建堆,交換資料,依次下去,就可以排序所有的資料。

4 Shell排序(ShellSort)

Shell排序通過將資料分成不同的組,先對每一組進行排序,然後再對所有的元素進行一次插入排序,以減少資料交換和移動的次數。平均效率是O(nlogn)。其中分組的合理性會對演算法產生重要的影響。現在多用D.E.Knuth的分組方法。

Shell排序比氣泡排序快5倍,比插入排序大致快2倍。Shell排序比起QuickSort,MergeSort,HeapSort慢很多。但是它相對比較簡單,它適合於資料量在5000以下並且速度並不是特別重要的場合。它對於資料量較小的數列重複排序是非常好的。

5 插入排序(InsertSort)

插入排序通過把序列中的值插入一個已經排序好的序列中,直到該序列的結束。插入排序是對氣泡排序的改進。它比氣泡排序快2倍。一般不用在資料大於1000的場合下使用插入排序,或者重複排序超過200資料項的序列。

6 氣泡排序(BubbleSort)

氣泡排序是最慢的排序演算法。在實際運用中它是效率最低的演算法。它通過一趟又一趟地比較陣列中的每一個元素,使較大的資料下沉,較小的資料上升。它是O(n^2)的演算法。

7 交換排序(ExchangeSort)和選擇排序(SelectSort)

這兩種排序方法都是交換方法的排序演算法,效率都是 O(n2)。在實際應用中處於和氣泡排序基本相同的地位。它們只是排序演算法發展的初級階段,在實際中使用較少。

8 基數排序(RadixSort)

基數排序和通常的排序演算法並不走同樣的路線。它是一種比較新穎的演算法,但是它只能用於整數的排序,如果我們要把同樣的辦法運用到浮點數上,我們必須瞭解浮點數的儲存格式,並通過特殊的方式將浮點數對映到整數上,然後再映射回去,這是非常麻煩的事情,因此,它的使用同樣也不多。而且,最重要的是,這樣演算法也需要較多的儲存空間。

9 總結

下面是一個總的表格,大致總結了我們常見的所有的排序演算法的特點。
 

排序法 平均時間 最差情形 穩定度 額外空間 備註
冒泡 O(n2)     O(n2) 穩定 O(1) n小時較好
交換     O(n2)     O(n2) 不穩定 O(1) n小時較好
選擇 O(n2) O(n2) 不穩定 O(1) n小時較好
插入 O(n2) O(n2) 穩定 O(1) 大部分已排序時較好
基數 O(logRB) O(logRB) 穩定 O(n)

B是真數(0-9),

R是基數(個十百)

Shell O(nlogn) O(ns) 1<s<2 不穩定 O(1) s是所選分組
快速 O(nlogn) O(n2) 不穩定 O(nlogn) n大時較好
歸併 O(nlogn) O(nlogn) 穩定 O(1) n大時較好
O(nlogn) O(nlogn) 不穩定 O(1) n大時較好