【Hive】13-實戰案例1——資料ETL
阿新 • • 發佈:2018-12-13
需求:
- 對web點選流日誌基礎資料表進行etl(按照倉庫模型設計)
- 按各時間維度統計來源域名top10
已有資料表 “t_orgin_weblog” :
+------------------+------------+----------+--+ | col_name | data_type | comment | +------------------+------------+----------+--+ | valid | string | | | remote_addr | string | | | remote_user | string | | | time_local | string | | | request | string | | | status | string | | | body_bytes_sent | string | | | http_referer | string | | | http_user_agent | string | | +------------------+------------+----------+--+ |
資料示例:
| true|1.162.203.134| - | 18/Sep/2013:13:47:35| /images/my.jpg | 200| 19939 |http://www.angularjs.cn/A0d9" | "Mozilla/5.0 (Windows | | true|1.202.186.37 | - | 18/Sep/2013:15:39:11| /wp-content/uploads/2013/08/windjs.png| 200| 34613 | "http://cnodejs.org/topic/521a30d4bee8d3cb1272ac0f" | "Mozilla/5.0(Macintosh;|
實現步驟:
將來訪url分離出host path query query id
drop table if exists t_etl_referurl;
create table t_etl_referurl as SELECT a.*,b.*
FROM t_orgin_weblog a LATERAL VIEW parse_url_tuple(regexp_replace(http_referer, "\"", ""),
'HOST', 'PATH','QUERY', 'QUERY:id') b as host, path, query, query_id;
2、從前述步驟進一步分離出日期時間形成ETL明細表“t_etl_detail”
drop table if exists t_etl_detail;
create table t_etl_detail as
select b.*,substring(time_local,0,11) as daystr,
substring(time_local,13) as tmstr,
substring(time_local,4,3) as month,
substring(time_local,0,2) as day,
substring(time_local,13,2) as hour
from t_etl_referurl b;
3、對etl資料進行分割槽(包含所有資料的結構化資訊)
drop table t_etl_detail_prt;
create table t_etl_detail_prt(
valid string,
remote_addr string,
remote_user string,
time_local string,
request string,
status string,
body_bytes_sent string,
http_referer string,
http_user_agent string,
host string,
path string,
query string,
query_id string,
daystr string,
tmstr string,
month string,
day string,
hour string)
partitioned by (mm string,dd string);
匯入資料
insert into table t_etl_detail_prt partition(mm='Sep',dd='18')
select * from t_etl_detail where daystr='18/Sep/2013';
insert into table t_etl_detail_prt partition(mm='Sep',dd='19')
select * from t_etl_detail where daystr='19/Sep/2013';
分個時間維度統計各referer_host的訪問次數並排序
create table t_refer_host_visit_top_tmp as
select referer_host,count(*) as counts,mm,dd,hh
from t_display_referer_counts group by hh,dd,mm,referer_host order by hh asc,dd asc,mm asc,counts desc;
4、來源訪問次數topn各時間維度URL
取各時間維度的referer_host訪問次數top n
select * from (select referer_host,counts,concat(hh,dd),row_number() over
(partition by concat(hh,dd) order by concat(hh,dd) asc) as od from t_refer_host_visit_top_tmp) t where od<=3;