918. Maximum Sum Circular Subarray
阿新 • • 發佈:2018-12-13
Given a circular array C of integers represented by A
, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i]
when 0 <= i < A.length
, and C[i+A.length] = C[i]
when i >= 0
.)
Also, a subarray may only include each element of the fixed buffer A
C[i], C[i+1], ..., C[j]
, there does not exist i <= k1, k2 <= j
with k1 % A.length = k2 % A.length
.)
Example 1:
Input: [1,-2,3,-2] Output: 3 Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5] Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1] Output: 4 Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3] Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1] Output: -1 Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
思路:要麼沒有橫跨首尾,要麼橫跨;
沒有橫跨就是running sum求最大;橫跨的話就求剩餘部分的最小running sum
class Solution(object):
def maxSubarraySumCircular(self, a):
"""
:type A: List[int]
:rtype: int
"""
if all(t<0 for t in a): return max(a)
ma_,mi_=float('-inf'),float('inf')
ma,mi=float('-inf'),float('inf')
s=su=0
for i in a:
s+=i
ma_=max(ma_,s)
mi_=min(mi_,s)
ma=max(ma,s-mi_)
mi=min(mi,s-ma_)
su+=i
return max(ma,su-mi)
s=Solution()
print(s.maxSubarraySumCircular([1,-2,3,-2]))
print(s.maxSubarraySumCircular([5,-3,5]))
print(s.maxSubarraySumCircular([3,-1,2,-1]))
print(s.maxSubarraySumCircular([3,-2,2,-3]))
print(s.maxSubarraySumCircular([-2,-3,-1]))