1. 程式人生 > >Redis偶發連線失敗案例分析

Redis偶發連線失敗案例分析

【作者】

張延俊:攜程技術保障中心資深DBA,對資料庫架構和疑難問題分析排查有濃厚的興趣。 壽向晨:攜程技術保障中心高階DBA,主要負責攜程Redis及DB的運維工作,在自動化運維,流程化及監控排障等方面有較多的實踐經驗,喜歡深入分析問題,提高團隊運維效率。

【問題描述】

 生產環境有一個Redis會偶爾發生連線失敗的報錯,報錯的時間點、客戶端IP並沒有特別明顯的規律,過一會兒,報錯會自動恢復。  以下是客戶端報錯資訊:

CRedis.Client.RExceptions.ExcuteCommandException: Unable to Connect redis server: ---> CRedis.Third.Redis.RedisException: Unable to Connect redis server:
在 CRedis.Third.Redis.RedisNativeClient.CreateConnectionError() 在 CRedis.Third.Redis.RedisNativeClient.SendExpectData(Byte[][] cmdWithBinaryArgs) 在 CRedis.Client.Entities.RedisServer.<>c__DisplayClassd`1.

 從報錯的資訊來看,應該是連線不上Redis所致。Redis的版本是2.8.19。雖然版本有點老,但基本執行穩定。  線上環境只有這個叢集有偶爾報錯。這個叢集的一個比較明顯的特徵是客戶端伺服器比較多,有上百臺。

【問題分析】

 從報錯的資訊來看,客戶端連線不到服務端。常見的原因有以下幾點:

  • 一個常見的原因是由於埠耗盡,對網路連線進行排查,在出問題的點上,TCP連線數遠沒有達到埠耗盡的場景,因此這個不是Redis連線不上的根本原因。
  • 另外一種常見的場景是在服務端有慢查詢,導致Redis服務阻塞。我們在Redis服務端,把執行超過10毫秒的語句進行抓取,也沒有抓到執行慢的語句。

 從服務端的部署的監控來看,出問題的點上,連線數有一個突然飆升,從3500個連線突然飆升至4100個連線。如下圖顯示:

同時間,伺服器端顯示Redis服務端有丟包現象:345539 – 344683 = 856個包。

Sat Apr  7 10:41:40 CST 2018
   1699 outgoing packets dropped
   92 dropped because of missing route
   344683 SYNs to LISTEN sockets dropped
344683 times the listen queue of a socket overflowed
Sat Apr  7 10:41:41 CST 2018
   1699 outgoing packets dropped
   92 dropped because of missing route
   345539 SYNs to LISTEN sockets dropped
   345539 times the listen queue of a socket overflowed

 客戶端報錯的原因基本確定,是因為建連速度太快,導致服務端backlog佇列溢位,連線被server端reset。

【關於backlog overflow】

 在高併發的短連線服務中,這是一種很常見的tcp報錯型別。一個正常的tcp建連過程如下:

 1.client傳送一個(SYN)給server

 2.server返回一個(SYN,ACK)給client

 3.client返回一個(ACK)

 三次握手結束,對client來說建連成功,client可以繼續傳送資料包給server,但是這個時候server端未必ready,如下圖所示 :

在BSD版本核心實現的tcp協議中,server端建連過程需要兩個佇列,一個是SYN queue,一個是accept queue。前者叫半開連線(或者半連線)佇列,在接收到client傳送的SYN時加入佇列。(一種常見的網路攻擊方式就是不斷髮送SYN但是不傳送ACK從而導致server端的半開佇列撐爆,server端拒絕服務。)後者叫全連線佇列,server返回(SYN,ACK),在接收到client傳送ACK後(此時client會認為建連已經完成,會開始傳送PSH包),如果accept queue沒有滿,那麼server從SYN queue把連線資訊移到accept queue;如果此時accept queue溢位的話,server的行為要看配置。如果tcp_abort_on_overflow為0(預設),那麼直接drop掉client傳送的PSH包,此時client會進入重發過程,一段時間後server端重新發送SYN,ACK,重新從建連的第二步開始;如果tcp_abort_on_overflow為1,那麼server端發現accept queue滿之後直接傳送reset。

通過wireshark搜尋發現在一秒內有超過2000次對Redis Server端發起建連請求。我們嘗試修改tcp backlog大小,從511調整到2048, 問題並沒有得到解決。所以此類微調,並不能徹底的解決問題。

【網路包分析】

我們用wireshark來識別網路擁塞的準確時間點和原因。我們已經有了準確的報錯時間點,先用editcap把超大的tcp包裁剪一下,裁成30秒間隔,並通過wireshark I/O 100ms間隔分析網路阻塞的準確時間點:

 根據圖示可以明顯看到tcp的packets來往存在block。

 對該block前後的網路包進行明細分析,網路包來往情況如下:

Time Source Dest Description
  12:01:54.6536050     Redis-Server     Clients     TCP:Flags=…AP…
  12:01:54.6538580     Redis-Server     Clients     TCP:Flags=…AP…
  12:01:54.6539770     Redis-Server     Clients     TCP:Flags=…AP…
  12:01:54.6720580     Redis-Server     Clients     TCP:Flags=…A..S..
  12:01:54.6727200     Redis-Server     Clients     TCP:Flags=…A……
  12:01:54.6808480     Redis-Server     Clients     TCP:Flags=…AP…..
  12:01:54.6910840     Redis-Server     Clients     TCP:Flags=…A…S.,
  12:01:54.6911950     Redis-Server     Clients     TCP:Flags=…A……
  …      …       …       …
  12:01:56.1181350     Redis-Server     Clients     TCP:Flags=…AP….

12:01:54.6808480, Redis Server端向客戶端傳送了一個Push包,也就是對於查詢請求的一個結果返回。後面的包都是在做連線處理,包括Ack包,Ack確認包,以及重置的RST包,緊接著下面一個Push包是在12:01:56.1181350發出的。中間的間隔是1.4372870秒。也就是說,在這1.4372870秒期間,Redis的伺服器端,除了做一個查詢,其他的操作都是在做建連,或拒絕連線。

客戶端報錯的前後邏輯已經清楚了,redis-server卡了1.43秒,client的connection pool被打滿,瘋狂新建連線,server的accept queue滿,直接拒絕服務,client報錯。開始懷疑client傳送了特殊命令,這時需要確認一下client的最後幾個命令是什麼,找到redis-server卡死前的第一個包,裝一個wireshark的redis外掛,看到最後幾個命令是簡單的get,並且key-value都很小,不至於需要耗費1.43秒才能完成。服務端也沒有slow log,此時排障再次陷入僵局。

【進一步分析】

為了瞭解這1.43秒之內,Redis Server在做什麼事情,我們用pstack來抓取資訊。Pstack本質上是gdb attach. 高頻率的抓取會影響redis的吞吐。死迴圈0.5秒一次無腦抓,在redis-server卡死的時候抓到堆疊如下(過濾了沒用的棧資訊):

Thu May 31 11:29:18 CST 2018
Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
#0  0x000000000048cec4 in ?? ()
#1  0x00000000004914a4 in je_arena_ralloc ()
#2  0x00000000004836a1 in je_realloc ()
#3  0x0000000000422cc5 in zrealloc ()
#4  0x00000000004213d7 in sdsRemoveFreeSpace ()
#5  0x000000000041ef3c in clientsCronResizeQueryBuffer ()
#6  0x00000000004205de in clientsCron ()
#7  0x0000000000420784 in serverCron ()
#8  0x0000000000418542 in aeProcessEvents ()
#9  0x000000000041873b in aeMain ()
#10 0x0000000000420fce in main ()
Thu May 31 11:29:19 CST 2018
Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
#0  0x0000003729ee5407 in madvise () from /lib64/libc.so.6
#1  0x0000000000493a4e in je_pages_purge ()
#2  0x000000000048cf70 in ?? ()
#3  0x00000000004914a4 in je_arena_ralloc ()
#4  0x00000000004836a1 in je_realloc ()
#5  0x0000000000422cc5 in zrealloc ()
#6  0x00000000004213d7 in sdsRemoveFreeSpace ()
#7  0x000000000041ef3c in clientsCronResizeQueryBuffer ()
#8  0x00000000004205de in clientsCron ()
#9  0x0000000000420784 in serverCron ()
#10 0x0000000000418542 in aeProcessEvents ()
#11 0x000000000041873b in aeMain ()
#12 0x0000000000420fce in main ()
Thu May 31 11:29:19 CST 2018
Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
#0  0x000000000048108c in je_malloc_usable_size ()
#1  0x0000000000422be6 in zmalloc ()
#2  0x00000000004220bc in sdsnewlen ()
#3  0x000000000042c409 in createStringObject ()
#4  0x000000000042918e in processMultibulkBuffer ()
#5  0x0000000000429662 in processInputBuffer ()
#6  0x0000000000429762 in readQueryFromClient ()
#7  0x000000000041847c in aeProcessEvents ()
#8  0x000000000041873b in aeMain ()
#9  0x0000000000420fce in main ()
Thu May 31 11:29:20 CST 2018
Thread 1 (Thread 0x7ff2db6de720 (LWP 8378)):
#0  0x000000372a60e7cd in write () from /lib64/libpthread.so.0
#1  0x0000000000428833 in sendReplyToClient ()
#2  0x0000000000418435 in aeProcessEvents ()
#3  0x000000000041873b in aeMain ()
#4  0x0000000000420fce in main ()

重複多次抓取後,從堆疊中發現可疑堆疊clientsCronResizeQueryBuffer位置,屬於serverCron()函式下,這個redis-server內部的定時排程,並不在使用者執行緒下,這個解釋了為什麼卡死的時候沒有出現慢查詢。

檢視redis原始碼,確認到底redis-server在做什麼:

clientsCron(server.h):
#define CLIENTS_CRON_MIN_ITERATIONS 5
void clientsCron(void) {
    /* Make sure to process at least numclients/server.hz of clients
     * per call. Since this function is called server.hz times per second
     * we are sure that in the worst case we process all the clients in 1
     * second. */
    int numclients = listLength(server.clients);
    int iterations = numclients/server.hz;
    mstime_t now = mstime();

    /* Process at least a few clients while we are at it, even if we need
     * to process less than CLIENTS_CRON_MIN_ITERATIONS to meet our contract
     * of processing each client once per second. */
    if (iterations < CLIENTS_CRON_MIN_ITERATIONS)
        iterations = (numclients < CLIENTS_CRON_MIN_ITERATIONS) ?
                     numclients : CLIENTS_CRON_MIN_ITERATIONS;

    while(listLength(server.clients) && iterations--) {
        client *c;
        listNode *head;

        /* Rotate the list, take the current head, process.
         * This way if the client must be removed from the list it's the
         * first element and we don't incur into O(N) computation. */
        listRotate(server.clients);
        head = listFirst(server.clients);
        c = listNodeValue(head);
        /* The following functions do different service checks on the client.
         * The protocol is that they return non-zero if the client was
         * terminated. */
        if (clientsCronHandleTimeout(c,now)) continue;
        if (clientsCronResizeQueryBuffer(c)) continue;
    }
}

clientsCron首先判斷當前client的數量,用於控制一次清理連線的數量,生產伺服器單例項的連線數量在5000不到,也就是一次清理的連線數是50個。

clientsCronResizeQueryBuffer(server.h):

/* The client query buffer is an sds.c string that can end with a lot of
 * free space not used, this function reclaims space if needed.
 *
 * The function always returns 0 as it never terminates the client. */
int clientsCronResizeQueryBuffer(client *c) {
    size_t querybuf_size = sdsAllocSize(c->querybuf);
    time_t idletime = server.unixtime - c->lastinteraction;

    /* 只在以下兩種情況下會Resize query buffer:
     * 1) Query buffer > BIG_ARG(在server.h 中定義#define PROTO_MBULK_BIG_ARG     (1024*32)) 
           且這個Buffer的小於一段時間的客戶端使用的峰值.
     * 2) 客戶端空閒超過2s且Buffer size大於1k. */
    if (((querybuf_size > PROTO_MBULK_BIG_ARG) &&
         (querybuf_size/(c->querybuf_peak+1)) > 2) ||
         (querybuf_size > 1024 && idletime > 2))
    {
        /* Only resize the query buffer if it is actually wasting space. */
        if (sdsavail(c->querybuf) > 1024) {
            c->querybuf = sdsRemoveFreeSpace(c->querybuf);
        }
    }
    /* Reset the peak again to capture the peak memory usage in the next
     * cycle. */
    c->querybuf_peak = 0;
    return 0;
}

如果redisClient物件的query buffer滿足條件,那麼就直接resize掉。滿足條件的連線分成兩種,一種是真的很大的,比該客戶端一段時間內使用的峰值還大;還有一種是很閒(idle>2)的,這兩種都要滿足一個條件,就是buffer free的部分超過1k。那麼redis-server卡住的原因就是正好有那麼50個很大的或者空閒的並且free size超過了1k大小連線的同時迴圈做了resize,由於redis都屬於單執行緒工作的程式,所以block了client。那麼解決這個問題辦法就很明朗了,讓resize 的頻率變低或者resize的執行速度變快。

既然問題出在query buffer上,我們先看一下這個東西被修改的位置:

readQueryFromClient(networking.c):
redisClient *createClient(int fd) {
    redisClient *c = zmalloc(sizeof(redisClient));

    /* passing -1 as fd it is possible to create a non connected client.
     * This is useful since all the Redis commands needs to be executed
     * in the context of a client. When commands are executed in other
     * contexts (for instance a Lua script) we need a non connected client. */
    if (fd != -1) {
        anetNonBlock(NULL,fd);
        anetEnableTcpNoDelay(NULL,fd);
        if (server.tcpkeepalive)
            anetKeepAlive(NULL,fd,server.tcpkeepalive);
        if (aeCreateFileEvent(server.el,fd,AE_READABLE,
            readQueryFromClient, c) == AE_ERR)
        {
            close(fd);
            zfree(c);
            return NULL;
        }
    }

    selectDb(c,0);
    c->id = server.next_client_id++;
    c->fd = fd;
    c->name = NULL;
    c->bufpos = 0;
    c->querybuf = sdsempty(); 初始化是0

readQueryFromClient(networking.c):
void readQueryFromClient(aeEventLoop *el, int fd, void *privdata, int mask) {
    redisClient *c = (redisClient*) privdata;
    int nread, readlen;
    size_t qblen;
    REDIS_NOTUSED(el);
    REDIS_NOTUSED(mask);

    server.current_client = c;
    readlen = REDIS_IOBUF_LEN;
    /* If this is a multi bulk request, and we are processing a bulk reply
     * that is large enough, try to maximize the probability that the query
     * buffer contains exactly the SDS string representing the object, even
     * at the risk of requiring more read(2) calls. This way the function
     * processMultiBulkBuffer() can avoid copying buffers to create the
     * Redis Object representing the argument. */
    if (c->reqtype == REDIS_REQ_MULTIBULK && c->multibulklen && c->bulklen != -1
        && c->bulklen >= REDIS_MBULK_BIG_ARG)
    {
        int remaining = (unsigned)(c->bulklen+2)-sdslen(c->querybuf);

        if (remaining < readlen) readlen = remaining;
    }

    qblen = sdslen(c->querybuf);
    if (c->querybuf_peak < qblen) c->querybuf_peak = qblen;
    c->querybuf = sdsMakeRoomFor(c->querybuf, readlen); 在這裡會被擴大

由此可見c->querybuf在連線第一次讀取命令後的大小就會被分配至少1024*32,所以回過頭再去看resize的清理邏輯就明視訊記憶體在問題,每個被使用到的query buffer的大小至少就是1024*32,但是清理的時候判斷條件是>1024,也就是說,所有的idle>2的被使用過的連線都會被resize掉,下次接收到請求的時候再重新分配到1024*32,這個其實是沒有必要的,在訪問比較頻繁的群集,記憶體會被頻繁得回收重分配,所以我們嘗試將清理的判斷條件改造為如下,就可以避免大部分沒有必要的resize操作:

if (((querybuf_size > REDIS_MBULK_BIG_ARG) &&
         (querybuf_size/(c->querybuf_peak+1)) > 2) ||
         (querybuf_size > 1024*32 && idletime > 2))
    {
        /* Only resize the query buffer if it is actually wasting space. */
        if (sdsavail(c->querybuf) > 1024*32) {
            c->querybuf = sdsRemoveFreeSpace(c->querybuf);
        }
    }

這個改造的副作用是記憶體的開銷,按照一個例項5k連線計算,5000*1024*32=160M,這點記憶體消耗對於上百G記憶體的伺服器完全可以接受。

【問題重現】

在使用修改過原始碼的Redis server後,問題仍然重現了,客戶端還是會報同類型的錯誤,且報錯的時候,伺服器記憶體依然會出現抖動。抓取記憶體堆疊資訊如下:

Thu Jun 14 21:56:54 CST 2018
#3  0x0000003729ee893d in clone () from /lib64/libc.so.6
Thread 1 (Thread 0x7f2dc108d720 (LWP 27851)):
#0  0x0000003729ee5400 in madvise () from /lib64/libc.so.6
#1  0x0000000000493a1e in je_pages_purge ()
#2  0x000000000048cf40 in arena_purge ()
#3  0x00000000004a7dad in je_tcache_bin_flush_large ()
#4  0x00000000004a85e9 in je_tcache_event_hard ()
#5  0x000000000042c0b5 in decrRefCount ()
#6  0x000000000042744d in resetClient ()
#7  0x000000000042963b in processInputBuffer ()
#8  0x0000000000429762 in readQueryFromClient ()
#9  0x000000000041847c in aeProcessEvents ()
#10 0x000000000041873b in aeMain ()
#11 0x0000000000420fce in main ()
Thu Jun 14 21:56:54 CST 2018
Thread 1 (Thread 0x7f2dc108d720 (LWP 27851)):
#0  0x0000003729ee5400 in madvise () from /lib64/libc.so.6
#1  0x0000000000493a1e in je_pages_purge ()
#2  0x000000000048cf40 in arena_purge ()
#3  0x00000000004a7dad in je_tcache_bin_flush_large ()
#4  0x00000000004a85e9 in je_tcache_event_hard ()
#5  0x000000000042c0b5 in decrRefCount ()
#6  0x000000000042744d in resetClient ()
#7  0x000000000042963b in processInputBuffer ()
#8  0x0000000000429762 in readQueryFromClient ()
#9  0x000000000041847c in aeProcessEvents ()
#10 0x000000000041873b in aeMain ()
#11 0x0000000000420fce in main ()

顯然,Querybuffer被頻繁resize的問題已經得到了優化,但是還是會出現客戶端報錯。這就又陷入了僵局。難道還有其他因素導致query buffer resize變慢?我們再次抓取pstack。但這時,jemalloc引起了我們的注意。此時回想Redis的記憶體分配機制,Redis為避免libc記憶體不被釋放導致大量記憶體碎片的問題,預設使用的是jemalloc用作記憶體分配管理,這次報錯的堆疊資訊中都是je_pages_purge () redis在呼叫jemalloc回收髒頁。我們看下jemalloc做了些什麼:

arena_purge(arena.c)
static void
arena_purge(arena_t *arena, bool all)
{
    arena_chunk_t *chunk;
    size_t npurgatory;
    if (config_debug) {
        size_t ndirty = 0;

        arena_chunk_dirty_iter(&arena->chunks_dirty, NULL,
            chunks_dirty_iter_cb, (void *)&ndirty);
        assert(ndirty == arena->ndirty);
    }
    assert(arena->ndirty > arena->npurgatory || all);
    assert((arena->nactive >> opt_lg_dirty_mult) < (arena->ndirty -
        arena->npurgatory) || all);

    if (config_stats)
        arena->stats.npurge++;
    npurgatory = arena_compute_npurgatory(arena, all);
    arena->npurgatory += npurgatory;

    while (npurgatory > 0) {
        size_t npurgeable, npurged, nunpurged;

        /* Get next chunk with dirty pages. */
        chunk = arena_chunk_dirty_first(&arena->chunks_dirty);
        if (chunk == NULL) {
            arena->npurgatory -= npurgatory;
            return;
        }
        npurgeable = chunk->ndirty;
        assert(npurgeable != 0);

        if (npurgeable > npurgatory && chunk->nruns_adjac == 0) {
    
            arena->npurgatory += npurgeable - npurgatory;
            npurgatory = npurgeable;
        }
        arena->npurgatory -= npurgeable;
        npurgatory -= npurgeable;
        npurged = arena_chunk_purge(arena, chunk, all);
        nunpurged = npurgeable - npurged;
        arena->npurgatory += nunpurged;
        npurgatory += nunpurged;
    }
}

Jemalloc每次回收都會判斷所有實際應該清理的chunck並對清理做count,這個操作對於高響應要求的系統是很奢侈的,所以我們考慮通過升級jemalloc的版本來優化purge的效能。Redis 4.0版本釋出後,效能有很大的改進,並可以通過命令回收記憶體,我們線上也正準備進行升級,跟隨4.0釋出的jemalloc版本為4.1,jemalloc的版本使用的在jemalloc的4.0之後版本的arena_purge()做了很多優化,去掉了計數器的呼叫,簡化了很多判斷邏輯,增加了arena_stash_dirty()方法合併了之前的計算和判斷邏輯,增加了purge_runs_sentinel,用保持髒塊在每個arena LRU中的方式替代之前的保持髒塊在arena樹的dirty-run-containing chunck中的方式,大幅度減少了髒塊purge的體積,並且在記憶體回收過程中不再移動記憶體塊。程式碼如下:

arena_purge(arena.c)
static void
arena_purge(arena_t *arena, bool all)
{
    chunk_hooks_t chunk_hooks = chunk_hooks_get(arena);
    size_t npurge, npurgeable, npurged;
    arena_runs_dirty_link_t purge_runs_sentinel;
    extent_node_t purge_chunks_sentinel;

    arena->purging = true;

    /*
     * Calls to arena_dirty_count() are disabled even for debug builds
     * because overhead grows nonlinearly as memory usage increases.
     */
    if (false && config_debug) {
        size_t ndirty = arena_dirty_count(arena);
        assert(ndirty == arena->ndirty);
    }
    assert((arena->nactive >> arena->lg_dirty_mult) < arena->ndirty || all);

    if (config_stats)
        arena->stats.npurge++;

    npurge = arena_compute_npurge(arena, all);
    qr_new(&purge_runs_sentinel, rd_link);
    extent_node_dirty_linkage_init(&purge_chunks_sentinel);

    npurgeable = arena_stash_dirty(arena, &chunk_hooks, all, npurge,
        &purge_runs_sentinel, &purge_chunks_sentinel);
    assert(npurgeable >= npurge);
    npurged = arena_purge_stashed(arena, &chunk_hooks, &purge_runs_sentinel,
        &purge_chunks_sentinel);
    assert(npurged == npurgeable);
    arena_unstash_purged(arena, &chunk_hooks, &purge_runs_sentinel,
        &purge_chunks_sentinel);

    arena->purging = false;
}

【解決問題】

實際上我們有多個選項。可以使用Google的tcmalloc來代替jemalloc,可以升級jemalloc的版本等等。我們根據上面的分析,嘗試通過升級jemalloc版本,實際操作為升級Redis版本來解決。我們將Redis的版本升級到4.0.9之後觀察,線上客戶端連線超時這個棘手的問題得到了解決。

【問題總結】

Redis在生產環境中因其支援高併發,響應快,易操作被廣泛使用,對於運維人員而言,其響應時間的要求帶來了各種各樣的問題,Redis的連線超時問題是其中比較典型的一種,從發現問題,客戶端連線超時,到通過抓取客戶端與服務端的網路包,記憶體堆疊定位問題,也被其中一些假象所迷惑,最終通過升級jemalloc(Redis)的版本解決問題,這次最值得總結和借鑑的是整個分析的思路。