1. 程式人生 > >hdu 1535(dij佇列優化模板加來回)

hdu 1535(dij佇列優化模板加來回)

nvitation Cards

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 5422    Accepted Submission(s): 2386


 

Problem Description

In the age of television, not many people attend theater performances. Antique Comedians of Malidinesia are aware of this fact. They want to propagate theater and, most of all, Antique Comedies. They have printed invitation cards with all the necessary information and with the programme. A lot of students were hired to distribute these invitations among the people. Each student volunteer has assigned exactly one bus stop and he or she stays there the whole day and gives invitation to people travelling by bus. A special course was taken where students learned how to influence people and what is the difference between influencing and robbery. 
The transport system is very special: all lines are unidirectional and connect exactly two stops. Buses leave the originating stop with passangers each half an hour. After reaching the destination stop they return empty to the originating stop, where they wait until the next full half an hour, e.g. X:00 or X:30, where 'X' denotes the hour. The fee for transport between two stops is given by special tables and is payable on the spot. The lines are planned in such a way, that each round trip (i.e. a journey starting and finishing at the same stop) passes through a Central Checkpoint Stop (CCS) where each passenger has to pass a thorough check including body scan. 

All the ACM student members leave the CCS each morning. Each volunteer is to move to one predetermined stop to invite passengers. There are as many volunteers as stops. At the end of the day, all students travel back to CCS. You are to write a computer program that helps ACM to minimize the amount of money to pay every day for the transport of their employees. 


 

 

 

Input

The input consists of N cases. The first line of the input contains only positive integer N. Then follow the cases. Each case begins with a line containing exactly two integers P and Q, 1 <= P,Q <= 1000000. P is the number of stops including CCS and Q the number of bus lines. Then there are Q lines, each describing one bus line. Each of the lines contains exactly three numbers - the originating stop, the destination stop and the price. The CCS is designated by number 1. Prices are positive integers the sum of which is smaller than 1000000000. You can also assume it is always possible to get from any stop to any other stop. 

 

 

Output

For each case, print one line containing the minimum amount of money to be paid each day by ACM for the travel costs of its volunteers. 

 

 

Sample Input

 

2 2 2 1 2 13 2 1 33 4 6 1 2 10 2 1 60 1 3 20 3 4 10 2 4 5 4 1 50

 

 

Sample Output

 

46 210

 

 

Source

Central Europe 1998

 

 

Recommend

LL   |   We have carefully selected several similar problems for you:  1317 1217 1531 1548 1546 

先求一遍從CCS出發到各個點的最短距離,再把邊反轉,再求一遍從CCS出發到各個點的最短距離,全部相加即可

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
#include<queue>
using namespace std;
#define maxn 100005
#define inf 0x3f3f3f3f
int t;
struct edge
{
    int from,to,dis;
    edge(int from,int to,int dis):from(from),to(to),dis(dis){};
};
struct node
{
    int d,u;
    node(int d,int u):d(d),u(u){};
    bool operator<(const node&rhs)const
    {
        return d>rhs.d;
    }
};
struct di
{
    int n,m;
    vector<edge>edges;
    vector<int>g[maxn];
    bool done[maxn];
    int d[maxn];
    void init(int n)
    {
        this->n=n;
        for(int i=0;i<n;i++)
            g[i].clear();
        edges.clear();
    }
    void addedge(int from,int to,int dis)
    {
        edges.push_back(edge(from,to,dis));
        m=edges.size();
        g[from].push_back(m-1);
    }

void dij()
{
    priority_queue<node>q;
    for(int i=0;i<n;i++)
    d[i]=inf;
    d[0]=0;
    memset(done,0,sizeof(done));
    q.push(node(d[0],0));
    while(!q.empty())
    {
        node x=q.top();
        q.pop();
        int u=x.u;
        if(done[u])
            continue;
            done[u]=true;
        for(int i=0;i<g[u].size();i++)
        {
            edge&e=edges[g[u][i]];
            if(d[e.to]>d[u]+e.dis)
            {
                d[e.to]=d[u]+e.dis;
                q.push(node(d[e.to],e.to));
            }
        }
    }
}
}DJ1,DJ2;
int main()
{scanf("%d",&t);
int n,m;
while(t--)
{scanf("%d%d",&n,&m);
DJ1.init(n);
DJ2.init(n);
int a,b,w;
for(int i=0;i<m;i++)
{
    scanf("%d%d%d",&a,&b,&w);
    a--;
    b--;
    DJ1.addedge(a,b,w);
    DJ2.addedge(b,a,w);
}
    DJ1.dij();
    DJ2.dij();
    int ans=0;
    for(int i=1;i<n;i++)

        {ans+=DJ1.d[i];
        ans+=DJ2.d[i];

}
printf("%d\n",ans);

}
return 0;
}

spfa演算法

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define  inf 0x3f3f3f3f
#define maxn 1000005
int n,m;
struct edge
{
   int u,v,w;
   edge()
   {

   }
   edge(int f,int t,int d)
   {
       u=f;
       v=t;
       w=d;
   }

};
struct bf
{int n,m;
int head[maxn];
int next[maxn];
edge edges[maxn*2];
int vis[maxn];
int d[maxn];
int p[maxn];
int cnt[maxn];
void init(int n)
{
this->n=n;
this->m=0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int w)
{
    edges[m]=edge(u,v,w);
    next[m]=head[u];
    head[u]=m++;
}
bool spfa(int s)
{
    queue<int>q;
    memset(vis,0,sizeof(vis));
    memset(cnt,0,sizeof(cnt));
    for(int i=0;i<n;i++)
        d[i]=i==s?0:inf;

    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
       vis[u]=0;
        for(int i=head[u];i!=-1;i=next[i])
        {
          int v=edges[i].v;
          int w=edges[i].w;
            if(d[v]>d[u]+w)
            {
                d[v]=d[u]+w;
                p[v]=i;
                if(!vis[v])
                {
                    vis[v]=1;
                    q.push(v);
                    if(++cnt[v]>n)
                        return true;
                }
            }
        }
    }
    return false;

}
}bf1,bf2;
int main()
{
    int T;
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        bf1.init(n);
        bf2.init(n);
        int a,b,c;
        while(m--)
        {
            scanf("%d%d%d",&a,&b,&c);
            a--;
            b--;
            bf1.addedge(a,b,c);
           bf2.addedge(b,a,c);


        }
        bf1.spfa(0);
        bf2.spfa(0);
        long long ans=0;
        for(int i=1;i<n;i++)
            ans+=bf1.d[i]+bf2.d[i];
    printf("%lld\n",ans);
    }
    return 0;
}