LA3263 That Nice Euler Circuits
阿新 • • 發佈:2018-12-16
題意
分析
尤拉定理:設平面內頂點數、邊數、面數分別為\(V,E,F\),則\(V+F-E=2\)。
列舉每對線段求交點,注意去重。
另外注意第n個端點和第一個端點重合。
時間複雜度\(o(T n^3)\)。
程式碼
#include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #include<set> #include<map> #include<queue> #include<stack> #include<algorithm> #include<bitset> #include<cassert> #include<ctime> #include<cstring> #define rg register #define il inline #define co const template<class T>il T read() { rg T data=0; rg int w=1; rg char ch=getchar(); while(!isdigit(ch)) { if(ch=='-') w=-1; ch=getchar(); } while(isdigit(ch)) { data=data*10+ch-'0'; ch=getchar(); } return data*w; } template<class T>T read(T&x) { return x=read<T>(); } using namespace std; typedef long long ll; co double eps=1e-10; int dcmp(double x) { if(fabs(x)<eps) return 0; else return x<0?-1:1; } struct Point { double x,y; Point(double x=0,double y=0) :x(x),y(y){} bool operator<(co Point&rhs)co { return x<rhs.x||(x==rhs.x&&y<rhs.y); } bool operator==(co Point&rhs)co { return dcmp(x-rhs.x)==0&&dcmp(y-rhs.y)==0; } }; typedef Point Vector; Vector operator+(Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); } Vector operator-(Point A,Point B) { return Vector(A.x-B.x,A.y-B.y); } Vector operator*(Vector A,double p) { return Vector(A.x*p,A.y*p); } Vector operator/(Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A,A)); } double Angle(Vector A,Vector B) { return acos(Dot(A,B)/Length(A)/Length(B)); } double Cross(Vector A,Vector B) { return A.x*B.y-A.y*B.x; } double Area2(Point A,Point B,Point C) { return Cross(B-A,C-A); } Vector Rotate(Vector A,double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); } Vector Normal(Vector A) { double L=Length(A); return Vector(-A.y/L,A.x/L); } Point GetLineIntersection(Point P,Vector v,Point Q,Vector w) { Vector u=P-Q; double t=Cross(w,u)/Cross(v,w); return P+v*t; } double DistanceToLine(Point P,Point A,Point B) { Vector v1=B-A,v2=P-A; return fabs(Cross(v1,v2))/Length(v1); } double DistanceToSegment(Point P,Point A,Point B) { if(A==B) return Length(P-A); Vector v1=B-A,v2=P-A,v3=P-B; if(dcmp(Dot(v1,v2))<0) return Length(v2); if(dcmp(Dot(v1,v3))>0) return Length(v3); return DistanceToLine(P,A,B); } Point GetLineProjection(Point P,Point A,Point B) { Vector v=B-A; return A+v*(Dot(v,P-A)/Dot(v,v)); } bool SegmentProperIntersection(Point a1,Point a2,Point b1,Point b2) { double c1=Cross(a2-a1,b1-a1),c2=Cross(a2-a1,b2-a1), c3=Cross(b2-b1,a1-b1),c4=Cross(b2-b1,a2-b1); return dcmp(c1)*dcmp(c2)<0&&dcmp(c3)*dcmp(c4)<0; } bool OnSegment(Point p,Point a1,Point a2) { return dcmp(Cross(a1-p,a2-p))==0&&dcmp(Dot(a1-p,a2-p))<0; } double PolygonArea(Point*p,int n) { double area=0; for(int i=1;i<n-1;++i) area+=Cross(p[i]-p[0],p[i+1]-p[0]); return area/2; } co int N=300; Point P[N],V[N*N]; int main() { // freopen(".in","r",stdin); // freopen(".out","w",stdout); int n,kase=0; while(read(n)) { for(int i=0;i<n;++i) { read(P[i].x);read(P[i].y); V[i]=P[i]; } --n; int c=n,e=n; for(int i=0;i<n;++i) for(int j=i+1;j<n;++j) if(SegmentProperIntersection(P[i],P[i+1],P[j],P[j+1])) V[c++]=GetLineIntersection(P[i],P[i+1]-P[i],P[j],P[j+1]-P[j]); sort(V,V+c); c=unique(V,V+c)-V; for(int i=0;i<c;++i) for(int j=0;j<n;++j) if(OnSegment(V[i],P[j],P[j+1])) ++e; printf("Case %d: There are %d pieces.\n",++kase,e+2-c); } return 0; }