1. 程式人生 > >函式收斂,數列收斂 ,積分收斂

函式收斂,數列收斂 ,積分收斂

函式收斂:就是當x趨於無時,函式有常數c;

數列收斂 :就是當x趨於無窮時,數列x(n)是常數c;

積分收斂:就是當上界趨於無窮時,積分中的函式有常數c,也就是函式圍成的面積有常數C。

收斂數列

令{

  

}為一個數列,且A為一個固定的實數,如果對於任意給出的b>0,存在一個正整數N,使得對於任意n>N,有|

  

-A|<b恆成立,就稱數列{

  

}收斂於A(極限為A),即數列{

  

}為收斂數列

函式收斂

定義方式與數列收斂類似。柯西收斂準則:關於函式f(x)在點x0處的收斂定義。對於任意實數b>0,存在c>0,對任意x1,x2滿足0<|x1-x0|<c,0<|x2-x0|<c,有|f(x1)-f(x2)|<b。

收斂的定義方式很好的體現了數學分析的精神實質。

如果給定一個定義在區間i上的函式列,u1(x), u2(x) ,u3(x)......至un(x)....... 則由這函式列構成的表示式u1(x)+u2(x)+u3(x)+......+un(x)+......⑴稱為定義在區間i上的(函式項)無窮級數,簡稱(函式項)級數

對於每一個確定的值X0∈I,函式項級數 ⑴ 成為常數項級數u1(x0)+u2(x0)+u3(x0)+......+un(x0)+.... (2) 這個級數可能收斂也可能發散。如果級數(2)發散,就稱點x0是函式項級數(1)的發散點。函式項級數(1)的收斂點的全體稱為他的收斂域 ,發散點的全體稱為他的發散域 對應於收斂域內任意一個數x,函式項級數稱為一收斂的常數項 級數 ,因而有一確定的和s。這樣,在收斂域上 ,函式項級數的和是x的函式S(x),通常稱s(x)為函式項級數的和函式,這函式的定義域就是級數的收斂域,並寫成S(x)=u1(x)+u2(x)+u3(x)+......+un(x)+......把函式項級數 ⑴ 的前n項部分和 記作Sn(x),則在收斂域上有lim n→∞Sn(x)=S(x)

記rn(x)=S(x)-Sn(x),rn(x)叫作函式級數項的餘項 (當然,只有x在收斂域上rn(x)才有意義,並有lim n→∞rn (x)=0

迭代演算法的斂散性

1.全域性收斂

對於任意的X0∈[a,b],由迭代式Xk+1=φ(Xk)所產生的點列收斂,即其當k→∞時,Xk的極限趨於X*,則稱Xk+1=φ(Xk)在[a,b]上收斂於X*。

2.區域性收斂

若存在X*在某鄰域R={X| |X-X*|<δ},對任何的X0∈R,由Xk+1=φ(Xk)所產生的點列收斂,則稱Xk+1=φ(Xk)在R上收斂於X*。