YOLO-V3 把玩 image.c demo.c
阿新 • • 發佈:2018-12-17
detector.c
#include "network.h" #include "region_layer.h" #include "cost_layer.h" #include "utils.h" #include "parser.h" #include "box.h" #include "demo.h" #include "option_list.h" #ifdef OPENCV #include "opencv2/highgui/highgui_c.h" #include "opencv2/core/core_c.h" //#include "opencv2/core/core.hpp" #include "opencv2/core/version.hpp" #include "opencv2/imgproc/imgproc_c.h" #ifndef CV_VERSION_EPOCH #include "opencv2/videoio/videoio_c.h" #define OPENCV_VERSION CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR)"" CVAUX_STR(CV_VERSION_REVISION) #pragma comment(lib, "opencv_world" OPENCV_VERSION ".lib") #else #define OPENCV_VERSION CVAUX_STR(CV_VERSION_EPOCH)"" CVAUX_STR(CV_VERSION_MAJOR)"" CVAUX_STR(CV_VERSION_MINOR) #pragma comment(lib, "opencv_core" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_imgproc" OPENCV_VERSION ".lib") #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") #endif IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); #endif // OPENCV #include "http_stream.h" int check_mistakes; static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) { list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); char *backup_directory = option_find_str(options, "backup", "/backup/"); srand(time(0)); char *base = basecfg(cfgfile); printf("%s\n", base); float avg_loss = -1; network *nets = calloc(ngpus, sizeof(network)); srand(time(0)); int seed = rand(); int i; for(i = 0; i < ngpus; ++i){ srand(seed); #ifdef GPU cuda_set_device(gpus[i]); #endif nets[i] = parse_network_cfg(cfgfile); if(weightfile){ load_weights(&nets[i], weightfile); } if(clear) *nets[i].seen = 0; nets[i].learning_rate *= ngpus; } srand(time(0)); network net = nets[0]; const int actual_batch_size = net.batch * net.subdivisions; if (actual_batch_size == 1) { printf("\n Error: You set incorrect value batch=1 for Training! You should set batch=64 subdivision=64 \n"); getchar(); } else if (actual_batch_size < 64) { printf("\n Warning: You set batch=%d lower than 64! It is recommended to set batch=64 subdivision=64 \n", actual_batch_size); } int imgs = net.batch * net.subdivisions * ngpus; printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); data train, buffer; layer l = net.layers[net.n - 1]; int classes = l.classes; float jitter = l.jitter; list *plist = get_paths(train_images); //int N = plist->size; char **paths = (char **)list_to_array(plist); int init_w = net.w; int init_h = net.h; int iter_save; iter_save = get_current_batch(net); load_args args = {0}; args.w = net.w; args.h = net.h; args.c = net.c; args.paths = paths; args.n = imgs; args.m = plist->size; args.classes = classes; args.flip = net.flip; args.jitter = jitter; args.num_boxes = l.max_boxes; args.small_object = net.small_object; args.d = &buffer; args.type = DETECTION_DATA; args.threads = 16; // 64 args.angle = net.angle; args.exposure = net.exposure; args.saturation = net.saturation; args.hue = net.hue; #ifdef OPENCV args.threads = 3 * ngpus; IplImage* img = NULL; float max_img_loss = 5; int number_of_lines = 100; int img_size = 1000; if (!dont_show) img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); #endif //OPENCV pthread_t load_thread = load_data(args); double time; int count = 0; //while(i*imgs < N*120){ while(get_current_batch(net) < net.max_batches){ if(l.random && count++%10 == 0){ printf("Resizing\n"); //int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 //int dim = (rand() % 4 + 16) * 32; //if (get_current_batch(net)+100 > net.max_batches) dim = 544; //int random_val = rand() % 12; //int dim_w = (random_val + (init_w / 32 - 5)) * 32; // +-160 //int dim_h = (random_val + (init_h / 32 - 5)) * 32; // +-160 float random_val = rand_scale(1.4); // *x or /x int dim_w = roundl(random_val*init_w / 32) * 32; int dim_h = roundl(random_val*init_h / 32) * 32; if (dim_w < 32) dim_w = 32; if (dim_h < 32) dim_h = 32; printf("%d x %d \n", dim_w, dim_h); args.w = dim_w; args.h = dim_h; pthread_join(load_thread, 0); train = buffer; free_data(train); load_thread = load_data(args); for(i = 0; i < ngpus; ++i){ resize_network(nets + i, dim_w, dim_h); } net = nets[0]; } time=what_time_is_it_now(); pthread_join(load_thread, 0); train = buffer; load_thread = load_data(args); /* int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); if(!b.x) break; printf("loaded: %f %f %f %f\n", b.x, b.y, b.w, b.h); } image im = float_to_image(448, 448, 3, train.X.vals[10]); int k; for(k = 0; k < l.max_boxes; ++k){ box b = float_to_box(train.y.vals[10] + 1 + k*5); printf("%d %d %d %d\n", truth.x, truth.y, truth.w, truth.h); draw_bbox(im, b, 8, 1,0,0); } save_image(im, "truth11"); */ printf("Loaded: %lf seconds\n", (what_time_is_it_now()-time)); time=what_time_is_it_now(); float loss = 0; #ifdef GPU if(ngpus == 1){ loss = train_network(net, train); } else { loss = train_networks(nets, ngpus, train, 4); } #else loss = train_network(net, train); #endif if (avg_loss < 0 || avg_loss != avg_loss) avg_loss = loss; // if(-inf or nan) avg_loss = avg_loss*.9 + loss*.1; i = get_current_batch(net); printf("\n %d: %f, %f avg loss, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), (what_time_is_it_now()-time), i*imgs); #ifdef OPENCV if(!dont_show) draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); #endif // OPENCV //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { //if (i % 100 == 0) { if(i >= (iter_save + 100)) { iter_save = i; #ifdef GPU if (ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); save_weights(net, buff); } free_data(train); } #ifdef GPU if(ngpus != 1) sync_nets(nets, ngpus, 0); #endif char buff[256]; sprintf(buff, "%s/%s_final.weights", backup_directory, base); save_weights(net, buff); #ifdef OPENCV cvReleaseImage(&img); cvDestroyAllWindows(); #endif // free memory pthread_join(load_thread, 0); free_data(buffer); free(base); free(paths); free_list_contents(plist); free_list(plist); free_list_contents_kvp(options); free_list(options); free(nets); free_network(net); } static int get_coco_image_id(char *filename) { char *p = strrchr(filename, '/'); char *c = strrchr(filename, '_'); if (c) p = c; return atoi(p + 1); } static void print_cocos(FILE *fp, char *image_path, detection *dets, int num_boxes, int classes, int w, int h) { int i, j; int image_id = get_coco_image_id(image_path); for (i = 0; i < num_boxes; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; float bx = xmin; float by = ymin; float bw = xmax - xmin; float bh = ymax - ymin; for (j = 0; j < classes; ++j) { if (dets[i].prob[j]) fprintf(fp, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f},\n", image_id, coco_ids[j], bx, by, bw, bh, dets[i].prob[j]); } } } void print_detector_detections(FILE **fps, char *id, detection *dets, int total, int classes, int w, int h) { int i, j; for (i = 0; i < total; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2. + 1; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2. + 1; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2. + 1; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2. + 1; if (xmin < 1) xmin = 1; if (ymin < 1) ymin = 1; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for (j = 0; j < classes; ++j) { if (dets[i].prob[j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, dets[i].prob[j], xmin, ymin, xmax, ymax); } } } void print_imagenet_detections(FILE *fp, int id, detection *dets, int total, int classes, int w, int h) { int i, j; for (i = 0; i < total; ++i) { float xmin = dets[i].bbox.x - dets[i].bbox.w / 2.; float xmax = dets[i].bbox.x + dets[i].bbox.w / 2.; float ymin = dets[i].bbox.y - dets[i].bbox.h / 2.; float ymax = dets[i].bbox.y + dets[i].bbox.h / 2.; if (xmin < 0) xmin = 0; if (ymin < 0) ymin = 0; if (xmax > w) xmax = w; if (ymax > h) ymax = h; for (j = 0; j < classes; ++j) { int class = j; if (dets[i].prob[class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j + 1, dets[i].prob[class], xmin, ymin, xmax, ymax); } } } void validate_detector(char *datacfg, char *cfgfile, char *weightfile, char *outfile) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.list"); char *name_list = option_find_str(options, "names", "data/names.list"); char *prefix = option_find_str(options, "results", "results"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int classes = l.classes; char buff[1024]; char *type = option_find_str(options, "eval", "voc"); FILE *fp = 0; FILE **fps = 0; int coco = 0; int imagenet = 0; if (0 == strcmp(type, "coco")) { if (!outfile) outfile = "coco_results"; snprintf(buff, 1024, "%s/%s.json", prefix, outfile); fp = fopen(buff, "w"); fprintf(fp, "[\n"); coco = 1; } else if (0 == strcmp(type, "imagenet")) { if (!outfile) outfile = "imagenet-detection"; snprintf(buff, 1024, "%s/%s.txt", prefix, outfile); fp = fopen(buff, "w"); imagenet = 1; classes = 200; } else { if (!outfile) outfile = "comp4_det_test_"; fps = calloc(classes, sizeof(FILE *)); for (j = 0; j < classes; ++j) { snprintf(buff, 1024, "%s/%s%s.txt", prefix, outfile, names[j]); fps[j] = fopen(buff, "w"); } } int m = plist->size; int i = 0; int t; float thresh = .005; float nms = .45; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = { 0 }; args.w = net.w; args.h = net.h; args.c = net.c; args.type = IMAGE_DATA; //args.type = LETTERBOX_DATA; for (t = 0; t < nthreads; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for (i = nthreads; i < m + nthreads; i += nthreads) { fprintf(stderr, "%d\n", i); for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for (t = 0; t < nthreads && i + t < m; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { char *path = paths[i + t - nthreads]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int w = val[t].w; int h = val[t].h; int nboxes = 0; int letterbox = (args.type == LETTERBOX_DATA); detection *dets = get_network_boxes(&net, w, h, thresh, .5, map, 0, &nboxes, letterbox); if (nms) do_nms_sort(dets, nboxes, classes, nms); if (coco) { print_cocos(fp, path, dets, nboxes, classes, w, h); } else if (imagenet) { print_imagenet_detections(fp, i + t - nthreads + 1, dets, nboxes, classes, w, h); } else { print_detector_detections(fps, id, dets, nboxes, classes, w, h); } free_detections(dets, nboxes); free(id); free_image(val[t]); free_image(val_resized[t]); } } for (j = 0; j < classes; ++j) { if (fps) fclose(fps[j]); } if (coco) { fseek(fp, -2, SEEK_CUR); fprintf(fp, "\n]\n"); fclose(fp); } fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)time(0) - start); } void validate_detector_recall(char *datacfg, char *cfgfile, char *weightfile) { network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); srand(time(0)); //list *plist = get_paths("data/coco_val_5k.list"); list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); layer l = net.layers[net.n - 1]; int j, k; int m = plist->size; int i = 0; float thresh = .001; float iou_thresh = .5; float nms = .4; int total = 0; int correct = 0; int proposals = 0; float avg_iou = 0; for (i = 0; i < m; ++i) { char *path = paths[i]; image orig = load_image(path, 0, 0, net.c); image sized = resize_image(orig, net.w, net.h); char *id = basecfg(path); network_predict(net, sized.data); int nboxes = 0; int letterbox = 0; detection *dets = get_network_boxes(&net, sized.w, sized.h, thresh, .5, 0, 1, &nboxes, letterbox); if (nms) do_nms_obj(dets, nboxes, 1, nms); char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); for (k = 0; k < nboxes; ++k) { if (dets[k].objectness > thresh) { ++proposals; } } for (j = 0; j < num_labels; ++j) { ++total; box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; float best_iou = 0; for (k = 0; k < nboxes; ++k) { float iou = box_iou(dets[k].bbox, t); if (dets[k].objectness > thresh && iou > best_iou) { best_iou = iou; } } avg_iou += best_iou; if (best_iou > iou_thresh) { ++correct; } } //fprintf(stderr, " %s - %s - ", paths[i], labelpath); fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals / (i + 1), avg_iou * 100 / total, 100.*correct / total); free(id); free_image(orig); free_image(sized); } } typedef struct { box b; float p; int class_id; int image_index; int truth_flag; int unique_truth_index; } box_prob; int detections_comparator(const void *pa, const void *pb) { box_prob a = *(box_prob *)pa; box_prob b = *(box_prob *)pb; float diff = a.p - b.p; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou) { int j; list *options = read_data_cfg(datacfg); char *valid_images = option_find_str(options, "valid", "data/train.txt"); char *difficult_valid_images = option_find_str(options, "difficult", NULL); char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); char *mapf = option_find_str(options, "map", 0); int *map = 0; if (mapf) map = read_map(mapf); FILE* reinforcement_fd = NULL; network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if (weightfile) { load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); srand(time(0)); list *plist = get_paths(valid_images); char **paths = (char **)list_to_array(plist); char **paths_dif = NULL; if (difficult_valid_images) { list *plist_dif = get_paths(difficult_valid_images); paths_dif = (char **)list_to_array(plist_dif); } layer l = net.layers[net.n - 1]; int classes = l.classes; int m = plist->size; int i = 0; int t; const float thresh = .005; const float nms = .45; const float iou_thresh = 0.5; int nthreads = 4; image *val = calloc(nthreads, sizeof(image)); image *val_resized = calloc(nthreads, sizeof(image)); image *buf = calloc(nthreads, sizeof(image)); image *buf_resized = calloc(nthreads, sizeof(image)); pthread_t *thr = calloc(nthreads, sizeof(pthread_t)); load_args args = { 0 }; args.w = net.w; args.h = net.h; args.c = net.c; args.type = IMAGE_DATA; //args.type = LETTERBOX_DATA; //const float thresh_calc_avg_iou = 0.24; float avg_iou = 0; int tp_for_thresh = 0; int fp_for_thresh = 0; box_prob *detections = calloc(1, sizeof(box_prob)); int detections_count = 0; int unique_truth_count = 0; int *truth_classes_count = calloc(classes, sizeof(int)); for (t = 0; t < nthreads; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } time_t start = time(0); for (i = nthreads; i < m + nthreads; i += nthreads) { fprintf(stderr, "%d\n", i); for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { pthread_join(thr[t], 0); val[t] = buf[t]; val_resized[t] = buf_resized[t]; } for (t = 0; t < nthreads && i + t < m; ++t) { args.path = paths[i + t]; args.im = &buf[t]; args.resized = &buf_resized[t]; thr[t] = load_data_in_thread(args); } for (t = 0; t < nthreads && i + t - nthreads < m; ++t) { const int image_index = i + t - nthreads; char *path = paths[image_index]; char *id = basecfg(path); float *X = val_resized[t].data; network_predict(net, X); int nboxes = 0; float hier_thresh = 0; detection *dets; if (args.type == LETTERBOX_DATA) { int letterbox = 1; dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); } else { int letterbox = 0; dets = get_network_boxes(&net, 1, 1, thresh, hier_thresh, 0, 0, &nboxes, letterbox); } //detection *dets = get_network_boxes(&net, val[t].w, val[t].h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); // for letterbox=1 if (nms) do_nms_sort(dets, nboxes, l.classes, nms); char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); int i, j; for (j = 0; j < num_labels; ++j) { truth_classes_count[truth[j].id]++; } // difficult box_label *truth_dif = NULL; int num_labels_dif = 0; if (paths_dif) { char *path_dif = paths_dif[image_index]; char labelpath_dif[4096]; replace_image_to_label(path_dif, labelpath_dif); truth_dif = read_boxes(labelpath_dif, &num_labels_dif); } const int checkpoint_detections_count = detections_count; for (i = 0; i < nboxes; ++i) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { float prob = dets[i].prob[class_id]; if (prob > 0) { detections_count++; detections = realloc(detections, detections_count * sizeof(box_prob)); detections[detections_count - 1].b = dets[i].bbox; detections[detections_count - 1].p = prob; detections[detections_count - 1].image_index = image_index; detections[detections_count - 1].class_id = class_id; detections[detections_count - 1].truth_flag = 0; detections[detections_count - 1].unique_truth_index = -1; int truth_index = -1; float max_iou = 0; for (j = 0; j < num_labels; ++j) { box t = { truth[j].x, truth[j].y, truth[j].w, truth[j].h }; //printf(" IoU = %f, prob = %f, class_id = %d, truth[j].id = %d \n", // box_iou(dets[i].bbox, t), prob, class_id, truth[j].id); float current_iou = box_iou(dets[i].bbox, t); if (current_iou > iou_thresh && class_id == truth[j].id) { if (current_iou > max_iou) { max_iou = current_iou; truth_index = unique_truth_count + j; } } } // best IoU if (truth_index > -1) { detections[detections_count - 1].truth_flag = 1; detections[detections_count - 1].unique_truth_index = truth_index; } else { // if object is difficult then remove detection for (j = 0; j < num_labels_dif; ++j) { box t = { truth_dif[j].x, truth_dif[j].y, truth_dif[j].w, truth_dif[j].h }; float current_iou = box_iou(dets[i].bbox, t); if (current_iou > iou_thresh && class_id == truth_dif[j].id) { --detections_count; break; } } } // calc avg IoU, true-positives, false-positives for required Threshold if (prob > thresh_calc_avg_iou) { int z, found = 0; for (z = checkpoint_detections_count; z < detections_count-1; ++z) if (detections[z].unique_truth_index == truth_index) { found = 1; break; } if(truth_index > -1 && found == 0) { avg_iou += max_iou; ++tp_for_thresh; } else fp_for_thresh++; } } } } unique_truth_count += num_labels; //static int previous_errors = 0; //int total_errors = fp_for_thresh + (unique_truth_count - tp_for_thresh); //int errors_in_this_image = total_errors - previous_errors; //previous_errors = total_errors; //if(reinforcement_fd == NULL) reinforcement_fd = fopen("reinforcement.txt", "wb"); //char buff[1000]; //sprintf(buff, "%s\n", path); //if(errors_in_this_image > 0) fwrite(buff, sizeof(char), strlen(buff), reinforcement_fd); free_detections(dets, nboxes); free(id); free_image(val[t]); free_image(val_resized[t]); } } if((tp_for_thresh + fp_for_thresh) > 0) avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); // SORT(detections) qsort(detections, detections_count, sizeof(box_prob), detections_comparator); typedef struct { double precision; double recall; int tp, fp, fn; } pr_t; // for PR-curve pr_t **pr = calloc(classes, sizeof(pr_t*)); for (i = 0; i < classes; ++i) { pr[i] = calloc(detections_count, sizeof(pr_t)); } printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); int *truth_flags = calloc(unique_truth_count, sizeof(int)); int rank; for (rank = 0; rank < detections_count; ++rank) { if(rank % 100 == 0) printf(" rank = %d of ranks = %d \r", rank, detections_count); if (rank > 0) { int class_id; for (class_id = 0; class_id < classes; ++class_id) { pr[class_id][rank].tp = pr[class_id][rank - 1].tp; pr[class_id][rank].fp = pr[class_id][rank - 1].fp; } } box_prob d = detections[rank]; // if (detected && isn't detected before) if (d.truth_flag == 1) { if (truth_flags[d.unique_truth_index] == 0) { truth_flags[d.unique_truth_index] = 1; pr[d.class_id][rank].tp++; // true-positive } } else { pr[d.class_id][rank].fp++; // false-positive } for (i = 0; i < classes; ++i) { const int tp = pr[i][rank].tp; const int fp = pr[i][rank].fp; const int fn = truth_classes_count[i] - tp; // false-negative = objects - true-positive pr[i][rank].fn = fn; if ((tp + fp) > 0) pr[i][rank].precision = (double)tp / (double)(tp + fp); else pr[i][rank].precision = 0; if ((tp + fn) > 0) pr[i][rank].recall = (double)tp / (double)(tp + fn); else pr[i][rank].recall = 0; } } free(truth_flags); double mean_average_precision = 0; for (i = 0; i < classes; ++i) { double avg_precision = 0; int point; for (point = 0; point < 11; ++point) { double cur_recall = point * 0.1; double cur_precision = 0; for (rank = 0; rank < detections_count; ++rank) { if (pr[i][rank].recall >= cur_recall) { // > or >= if (pr[i][rank].precision > cur_precision) { cur_precision = pr[i][rank].precision; } } } //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); avg_precision += cur_precision; } avg_precision = avg_precision / 11; printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); mean_average_precision += avg_precision; } const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); mean_average_precision = mean_average_precision / classes; printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); for (i = 0; i < classes; ++i) { free(pr[i]); } free(pr); free(detections); free(truth_classes_count); fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); if (reinforcement_fd != NULL) fclose(reinforcement_fd); } #ifdef OPENCV typedef struct { float w, h; } anchors_t; int anchors_comparator(const void *pa, const void *pb) { anchors_t a = *(anchors_t *)pa; anchors_t b = *(anchors_t *)pb; float diff = b.w*b.h - a.w*a.h; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) { printf("\n num_of_clusters = %d, width = %d, height = %d \n", num_of_clusters, width, height); if (width < 0 || height < 0) { printf("Usage: darknet detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 \n"); printf("Error: set width and height \n"); return; } //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; float *rel_width_height_array = calloc(1000, sizeof(float)); list *options = read_data_cfg(datacfg); char *train_images = option_find_str(options, "train", "data/train.list"); list *plist = get_paths(train_images); int number_of_images = plist->size; char **paths = (char **)list_to_array(plist); int number_of_boxes = 0; printf(" read labels from %d images \n", number_of_images); int i, j; for (i = 0; i < number_of_images; ++i) { char *path = paths[i]; char labelpath[4096]; replace_image_to_label(path, labelpath); int num_labels = 0; box_label *truth = read_boxes(labelpath, &num_labels); //printf(" new path: %s \n", labelpath); char buff[1024]; for (j = 0; j < num_labels; ++j) { if (truth[j].x > 1 || truth[j].x <= 0 || truth[j].y > 1 || truth[j].y <= 0 || truth[j].w > 1 || truth[j].w <= 0 || truth[j].h > 1 || truth[j].h <= 0) { printf("\n\nWrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f \n", labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); sprintf(buff, "echo \"Wrong label: %s - j = %d, x = %f, y = %f, width = %f, height = %f\" >> bad_label.list", labelpath, j, truth[j].x, truth[j].y, truth[j].w, truth[j].h); system(buff); if (check_mistakes) getchar(); } number_of_boxes++; rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * width; rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * height; printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); } } printf("\n all loaded. \n"); CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); for (i = 0; i < number_of_boxes; ++i) { points->data.fl[i * 2] = rel_width_height_array[i * 2]; points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0)); //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0)); } const int attemps = 10; double compactness; enum { KMEANS_RANDOM_CENTERS = 0, KMEANS_USE_INITIAL_LABELS = 1, KMEANS_PP_CENTERS = 2 }; printf("\n calculating k-means++ ..."); // Should be used: distance(box, centroid) = 1 - IoU(box, centroid) cvKMeans2(points, num_of_clusters, labels, cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, 0, KMEANS_PP_CENTERS, centers, &compactness); // sort anchors qsort(centers->data.fl, num_of_clusters, 2*sizeof(float), anchors_comparator); //orig 2.0 anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 //float orig_anch[] = { 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 }; // worse than ours (even for 19x19 final size - for input size 608x608) //orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 //float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 }; // orig (IoU=59.90%) better than ours (59.75%) //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; // ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 //float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 }; //for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i]; //for (i = 0; i < number_of_boxes; ++i) // printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]); printf("\n"); float avg_iou = 0; for (i = 0; i < number_of_boxes; ++i) { float box_w = points->data.fl[i * 2]; float box_h = points->data.fl[i * 2 + 1]; //int cluster_idx = labels->data.i[i]; int cluster_idx = 0; float min_dist = FLT_MAX; for (j = 0; j < num_of_clusters; ++j) { float anchor_w = centers->data.fl[j * 2]; float anchor_h = centers->data.fl[j * 2 + 1]; float w_diff = anchor_w - box_w; float h_diff = anchor_h - box_h; float distance = sqrt(w_diff*w_diff + h_diff*h_diff); if (distance < min_dist) min_dist = distance, cluster_idx = j; } float anchor_w = centers->data.fl[cluster_idx * 2]; float anchor_h = centers->data.fl[cluster_idx * 2 + 1]; float min_w = (box_w < anchor_w) ? box_w : anchor_w; float min_h = (box_h < anchor_h) ? box_h : anchor_h; float box_intersect = min_w*min_h; float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; float iou = box_intersect / box_union; if (iou > 1 || iou < 0) { // || box_w > width || box_h > height) { printf(" Wrong label: i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n", i, box_w, box_h, anchor_w, anchor_h, iou); } else avg_iou += iou; } avg_iou = 100 * avg_iou / number_of_boxes; printf("\n avg IoU = %2.2f %% \n", avg_iou); char buff[1024]; FILE* fw = fopen("anchors.txt", "wb"); if (fw) { printf("\nSaving anchors to the file: anchors.txt \n"); printf("anchors = "); for (i = 0; i < num_of_clusters; ++i) { sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); printf("%s", buff); fwrite(buff, sizeof(char), strlen(buff), fw); if (i + 1 < num_of_clusters) { fwrite(", ", sizeof(char), 2, fw); printf(", "); } } printf("\n"); fclose(fw); } else { printf(" Error: file anchors.txt can't be open \n"); } if (show) { size_t img_size = 700; IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); cvZero(img); for (j = 0; j < num_of_clusters; ++j) { CvPoint pt1, pt2; pt1.x = pt1.y = 0; pt2.x = centers->data.fl[j * 2] * img_size / width; pt2.y = centers->data.fl[j * 2 + 1] * img_size / height; cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0); } for (i = 0; i < number_of_boxes; ++i) { CvPoint pt; pt.x = points->data.fl[i * 2] * img_size / width; pt.y = points->data.fl[i * 2 + 1] * img_size / height; int cluster_idx = labels->data.i[i]; int red_id = (cluster_idx * (uint64_t)123 + 55) % 255; int green_id = (cluster_idx * (uint64_t)321 + 33) % 255; int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255; cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0); //if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y); } cvShowImage("clusters", img); cvWaitKey(0); cvReleaseImage(&img); cvDestroyAllWindows(); } free(rel_width_height_array); cvReleaseMat(&points); cvReleaseMat(¢ers); cvReleaseMat(&labels); } #else void calc_anchors(char *datacfg, int num_of_clusters, int width, int height, int show) { printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); } #endif // OPENCV void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, float hier_thresh, int dont_show, int ext_output, int save_labels) { list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); int names_size = 0; char **names = get_labels_custom(name_list, &names_size); //get_labels(name_list); image **alphabet = load_alphabet(); network net = parse_network_cfg_custom(cfgfile, 1); // set batch=1 if(weightfile){ load_weights(&net, weightfile); } //set_batch_network(&net, 1); fuse_conv_batchnorm(net); calculate_binary_weights(net); if (net.layers[net.n - 1].classes != names_size) { printf(" Error: in the file %s number of names %d that isn't equal to classes=%d in the file %s \n", name_list, names_size, net.layers[net.n - 1].classes, cfgfile); if(net.layers[net.n - 1].classes > names_size) getchar(); } srand(2222222); double time; char buff[256]; char *input = buff; int j; float nms=.45; // 0.4F while(1){ if(filename){ strncpy(input, filename, 256); if(strlen(input) > 0) if (input[strlen(input) - 1] == 0x0d) input[strlen(input) - 1] = 0; } else { printf("****detector.c 1133****** Enter Image Path: "); //dspeia fflush(stdout); input = fgets(input, 256, stdin); if(!input) return; strtok(input, "\n"); } image im = load_image(input,0,0,net.c); printf("****detector.c 1140****** input: %c",input); //dspeia int letterbox = 0; image sized = resize_image(im, net.w, net.h); //image sized = letterbox_image(im, net.w, net.h); letterbox = 1; layer l = net.layers[net.n-1]; //box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); //float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); //for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *)); float *X = sized.data; //time= what_time_is_it_now(); double time = get_time_point(); network_predict(net, X); //network_predict_image(&net, im); letterbox = 1; //圖片載入完成 printf("%s: Predicted in %lf milli-seconds. **detecotr.c 1162 \n", input, ((double)get_time_point() - time) / 1000); //printf("%s: Predicted in %f seconds.\n", input, (what_time_is_it_now()-time)); int nboxes = 0; detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); if (nms) do_nms_sort(dets, nboxes, l.classes, nms); printf("**** l.classes == %c ** \n", l.classes); //test classes draw_detections_v3(im, dets, nboxes, thresh, names, alphabet, l.classes, ext_output); //draw_detections_v3,不是image.c的draw_detections save_image(im, "pre-img//predictions"); if (!dont_show) { show_image(im, "predictions"); } // pseudo labeling concept - fast.ai if(save_labels) { char labelpath[4096]; replace_image_to_label(input, labelpath); FILE* fw = fopen(labelpath, "wb"); int i; for (i = 0; i < nboxes; ++i) { char buff[1024]; int class_id = -1; float prob = 0; for (j = 0; j < l.classes; ++j) { if (dets[i].prob[j] > thresh && dets[i].prob[j] > prob) { prob = dets[i].prob[j]; class_id = j; } } if (class_id >= 0) { sprintf(buff, "%d %2.4f %2.4f %2.4f %2.4f\n", class_id, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h); fwrite(buff, sizeof(char), strlen(buff), fw); } } fclose(fw); } free_detections(dets, nboxes); free_image(im); free_image(sized); //free(boxes); //free_ptrs((void **)probs, l.w*l.h*l.n); #ifdef OPENCV if (!dont_show) { cvWaitKey(0); cvDestroyAllWindows(); } #endif if (filename) break; } // free memory free_ptrs(names, net.layers[net.n - 1].classes); free_list_contents_kvp(options); free_list(options); int i; const int nsize = 8; for (j = 0; j < nsize; ++j) { for (i = 32; i < 127; ++i) { free_image(alphabet[j][i]); } free(alphabet[j]); } free(alphabet); free_network(net); } void run_detector(int argc, char **argv) { //輸入中有第四位引數的函式,要求cmd中跟上引數如:"-out_filename result/out.mp4" 其他的不跟引數 int dont_show = find_arg(argc, argv, "-dont_show"); //不展示視窗,find_arg()有匹配為1,無匹配則0 int show = find_arg(argc, argv, "-show"); check_mistakes = find_arg(argc, argv, "-check_mistakes"); int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); //瀏覽器展示結果的埠號 char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); //如:-out_filename out.mp4,有視訊檔案輸入才能有輸出,無法用攝像頭儲存輸出 char *outfile = find_char_arg(argc, argv, "-out", 0); char *prefix = find_char_arg(argc, argv, "-prefix", 0); float thresh = find_float_arg(argc, argv, "-thresh", .25); // 0.24 //單一閾值 float hier_thresh = find_float_arg(argc, argv, "-hier", .5); //多類別顯示閾值 int cam_index = find_int_arg(argc, argv, "-c", 0); //攝像頭選擇 int frame_skip = find_int_arg(argc, argv, "-s", 0); //在框中跳幀顯示 int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); //簇個數? int width = find_int_arg(argc, argv, "-width", -1); int height = find_int_arg(argc, argv, "-height", -1); // extended output in test mode (output of rect bound coords) // and for recall mode (extended output table-like format with results for best_class fit) int ext_output = find_arg(argc, argv, "-ext_output"); //輸出目標座標 int save_labels = find_arg(argc, argv, "-save_labels"); if(argc < 4){ fprintf(stderr, "usage: %s %s [train/test/valid/demo/map] [data] [cfg] [weights (optional)]\n", argv[0], argv[1]); return; } char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); //選擇gpu int *gpus = 0; int gpu = 0; int ngpus = 0; if(gpu_list){ printf("%s\n", gpu_list); int len = strlen(gpu_list); ngpus = 1; int i; for(i = 0; i < len; ++i){ if (gpu_list[i] == ',') ++ngpus; } gpus = calloc(ngpus, sizeof(int)); for(i = 0; i < ngpus; ++i){ gpus[i] = atoi(gpu_list); gpu_list = strchr(gpu_list, ',')+1; } } else { gpu = gpu_index; gpus = &gpu; ngpus = 1; } int clear = find_arg(argc, argv, "-clear"); char *datacfg = argv[3]; char *cfg = argv[4]; char *weights = (argc > 5) ? argv[5] : 0; if(weights) if(strlen(weights) > 0) if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; char *filename = (argc > 6) ? argv[6]: 0; if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, hier_thresh, dont_show, ext_output, save_labels); else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights, outfile); else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, width, height, show); else if(0==strcmp(argv[2], "demo")) { list *options = read_data_cfg(datacfg); int classes = option_find_int(options, "classes", 20); //class可能是一幀最大類別數?? char *name_list = option_find_str(options, "names", "data/names.list"); char **names = get_labels(name_list); if(filename) if(strlen(filename) > 0) if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; demo(cfg, weights, thresh, hier_thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, http_stream_port, dont_show, ext_output); free_list_contents_kvp(options); free_list(options); } else printf(" There isn't such command: %s", argv[2]); }
image.c
#include "image.h"
#include "utils.h"
#include "blas.h"
#include "cuda.h"
#include <stdio.h>
#include <math.h>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
#define STB_IMAGE_WRITE_IMPLEMENTATION
#include "stb_image_write.h"
#ifdef OPENCV
#include "opencv2/highgui/highgui_c.h"
#include "opencv2/imgproc/imgproc_c.h"
#include "opencv2/core/types_c.h"
#include "opencv2/core/version.hpp"
#ifndef CV_VERSION_EPOCH
#include "opencv2/videoio/videoio_c.h"
#include "opencv2/imgcodecs/imgcodecs_c.h"
#include "http_stream.h"
#endif
#include "http_stream.h"
#endif
extern int check_mistakes;
int windows = 0;
float colors[6][3] = { {1,0,1}, {0,0,1},{0,1,1},{0,1,0},{1,1,0},{1,0,0} };
float get_color(int c, int x, int max)
{
float ratio = ((float)x/max)*5;
int i = floor(ratio);
int j = ceil(ratio);
ratio -= i;
float r = (1-ratio) * colors[i][c] + ratio*colors[j][c];
//printf("%f\n", r);
return r;
}
static float get_pixel(image m, int x, int y, int c)
{
assert(x < m.w && y < m.h && c < m.c);
return m.data[c*m.h*m.w + y*m.w + x];
}
static float get_pixel_extend(image m, int x, int y, int c)
{
if (x < 0 || x >= m.w || y < 0 || y >= m.h) return 0;
/*
if(x < 0) x = 0;
if(x >= m.w) x = m.w-1;
if(y < 0) y = 0;
if(y >= m.h) y = m.h-1;
*/
if (c < 0 || c >= m.c) return 0;
return get_pixel(m, x, y, c);
}
static void set_pixel(image m, int x, int y, int c, float val)
{
if (x < 0 || y < 0 || c < 0 || x >= m.w || y >= m.h || c >= m.c) return;
assert(x < m.w && y < m.h && c < m.c);
m.data[c*m.h*m.w + y*m.w + x] = val;
}
static void add_pixel(image m, int x, int y, int c, float val)
{
assert(x < m.w && y < m.h && c < m.c);
m.data[c*m.h*m.w + y*m.w + x] += val;
}
void composite_image(image source, image dest, int dx, int dy)
{
int x,y,k;
for(k = 0; k < source.c; ++k){
for(y = 0; y < source.h; ++y){
for(x = 0; x < source.w; ++x){
float val = get_pixel(source, x, y, k);
float val2 = get_pixel_extend(dest, dx+x, dy+y, k);
set_pixel(dest, dx+x, dy+y, k, val * val2);
}
}
}
}
image border_image(image a, int border)
{
image b = make_image(a.w + 2*border, a.h + 2*border, a.c);
int x,y,k;
for(k = 0; k < b.c; ++k){
for(y = 0; y < b.h; ++y){
for(x = 0; x < b.w; ++x){
float val = get_pixel_extend(a, x - border, y - border, k);
if(x - border < 0 || x - border >= a.w || y - border < 0 || y - border >= a.h) val = 1;
set_pixel(b, x, y, k, val);
}
}
}
return b;
}
image tile_images(image a, image b, int dx)
{
if(a.w == 0) return copy_image(b);
image c = make_image(a.w + b.w + dx, (a.h > b.h) ? a.h : b.h, (a.c > b.c) ? a.c : b.c);
fill_cpu(c.w*c.h*c.c, 1, c.data, 1);
embed_image(a, c, 0, 0);
composite_image(b, c, a.w + dx, 0);
return c;
}
image get_label(image **characters, char *string, int size)
{
if(size > 7) size = 7;
image label = make_empty_image(0,0,0);
while(*string){
image l = characters[size][(int)*string];
image n = tile_images(label, l, -size - 1 + (size+1)/2);
free_image(label);
label = n;
++string;
}
image b = border_image(label, label.h*.25);
free_image(label);
return b;
}
image get_label_v3(image **characters, char *string, int size)
{
size = size / 10;
if (size > 7) size = 7;
image label = make_empty_image(0, 0, 0);
while (*string) {
image l = characters[size][(int)*string];
image n = tile_images(label, l, -size - 1 + (size + 1) / 2);
free_image(label);
label = n;
++string;
}
image b = border_image(label, label.h*.25);
free_image(label);
return b;
}
void draw_label(image a, int r, int c, image label, const float *rgb)
{
int w = label.w;
int h = label.h;
if (r - h >= 0) r = r - h;
int i, j, k;
for(j = 0; j < h && j + r < a.h; ++j){
for(i = 0; i < w && i + c < a.w; ++i){
for(k = 0; k < label.c; ++k){
float val = get_pixel(label, i, j, k);
set_pixel(a, i+c, j+r, k, rgb[k] * val);
}
}
}
}
void draw_box(image a, int x1, int y1, int x2, int y2, float r, float g, float b)
{
//normalize_image(a);
int i;
if(x1 < 0) x1 = 0;
if(x1 >= a.w) x1 = a.w-1;
if(x2 < 0) x2 = 0;
if(x2 >= a.w) x2 = a.w-1;
if(y1 < 0) y1 = 0;
if(y1 >= a.h) y1 = a.h-1;
if(y2 < 0) y2 = 0;
if(y2 >= a.h) y2 = a.h-1;
for(i = x1; i <= x2; ++i){
a.data[i + y1*a.w + 0*a.w*a.h] = r;
a.data[i + y2*a.w + 0*a.w*a.h] = r;
a.data[i + y1*a.w + 1*a.w*a.h] = g;
a.data[i + y2*a.w + 1*a.w*a.h] = g;
a.data[i + y1*a.w + 2*a.w*a.h] = b;
a.data[i + y2*a.w + 2*a.w*a.h] = b;
}
for(i = y1; i <= y2; ++i){
a.data[x1 + i*a.w + 0*a.w*a.h] = r;
a.data[x2 + i*a.w + 0*a.w*a.h] = r;
a.data[x1 + i*a.w + 1*a.w*a.h] = g;
a.data[x2 + i*a.w + 1*a.w*a.h] = g;
a.data[x1 + i*a.w + 2*a.w*a.h] = b;
a.data[x2 + i*a.w + 2*a.w*a.h] = b;
}
}
void draw_box_width(image a, int x1, int y1, int x2, int y2, int w, float r, float g, float b)
{
int i;
for(i = 0; i < w; ++i){
draw_box(a, x1+i, y1+i, x2-i, y2-i, r, g, b);
}
}
void draw_bbox(image a, box bbox, int w, float r, float g, float b)
{
int left = (bbox.x-bbox.w/2)*a.w;
int right = (bbox.x+bbox.w/2)*a.w;
int top = (bbox.y-bbox.h/2)*a.h;
int bot = (bbox.y+bbox.h/2)*a.h;
int i;
for(i = 0; i < w; ++i){
draw_box(a, left+i, top+i, right-i, bot-i, r, g, b);
}
}
image **load_alphabet()
{
int i, j;
const int nsize = 8;
image **alphabets = calloc(nsize, sizeof(image));
for(j = 0; j < nsize; ++j){
alphabets[j] = calloc(128, sizeof(image));
for(i = 32; i < 127; ++i){
char buff[256];
sprintf(buff, "data/labels/%d_%d.png", i, j);
alphabets[j][i] = load_image_color(buff, 0, 0);
}
}
return alphabets;
}
// Creates array of detections with prob > thresh and fills best_class for them
detection_with_class* get_actual_detections(detection *dets, int dets_num, float thresh, int* selected_detections_num)
{
int selected_num = 0;
detection_with_class* result_arr = calloc(dets_num, sizeof(detection_with_class));
int i;
for (i = 0; i < dets_num; ++i) { //提取到的特徵目標迴圈判斷
int best_class = -1;
float best_class_prob = thresh;
int j;
for (j = 0; j < dets[i].classes; ++j) { //對檢測到的目標的類別概率判斷,賦予最大的概率類別
if (dets[i].prob[j] > best_class_prob ) {
best_class = j;
best_class_prob = dets[i].prob[j];
}
}
if (best_class >= 0) { //如果最大的類別概率大於0,該detction結構體賦給result_arr返回
result_arr[selected_num].det = dets[i];
result_arr[selected_num].best_class = best_class;
++selected_num;
}
}
if (selected_detections_num)
*selected_detections_num = selected_num;
return result_arr;
}
// compare to sort detection** by bbox.x
int compare_by_lefts(const void *a_ptr, const void *b_ptr) {
const detection_with_class* a = (detection_with_class*)a_ptr;
const detection_with_class* b = (detection_with_class*)b_ptr;
const float delta = (a->det.bbox.x - a->det.bbox.w/2) - (b->det.bbox.x - b->det.bbox.w/2);
return delta < 0 ? -1 : delta > 0 ? 1 : 0;
}
// compare to sort detection** by best_class probability
int compare_by_probs(const void *a_ptr, const void *b_ptr) {
const detection_with_class* a = (detection_with_class*)a_ptr;
const detection_with_class* b = (detection_with_class*)b_ptr;
float delta = a->det.prob[a->best_class] - b->det.prob[b->best_class];
return delta < 0 ? -1 : delta > 0 ? 1 : 0;
}
void draw_detections_v3(image im, detection *dets, int num, float thresh, char **names, image **alphabet, int classes, int ext_output)
{
int selected_detections_num;
//例項化一個結構體並得到卷積後的各個特徵的類名和最大概率
detection_with_class* selected_detections = get_actual_detections(dets, num, thresh, &selected_detections_num);
// text output
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_lefts);
int i;
for (i = 0; i < selected_detections_num; ++i) { //對於檢測到的目標的迴圈
int best_class = selected_detections[i].best_class; //上面返回的結構體中的best_class 原為const int
/*************dspeia 20181026 修改label上的顯示***************/
if (best_class != 1 && best_class != 2 && best_class != 3 && best_class != 0){
printf("%s: %.0f%% ******* image.c 292 *******", names[79], selected_detections[i].det.prob[best_class] * 100); //增加這一句,cmd上顯示other,呼叫的coco.name檔案,如何圖片上顯示other??
}
else {
printf("%s: %.0f%% ******* image.c 292 *******", names[best_class], selected_detections[i].det.prob[best_class] * 100);
}
if (ext_output) //如果cmd的命令該位置為真,可打印出各個目標的box位置
printf("\t(left_x: %4.0f top_y: %4.0f width: %4.0f height: %4.0f)\n",
(selected_detections[i].det.bbox.x - selected_detections[i].det.bbox.w / 2)*im.w,
(selected_detections[i].det.bbox.y - selected_detections[i].det.bbox.h / 2)*im.h,
selected_detections[i].det.bbox.w*im.w, selected_detections[i].det.bbox.h*im.h);
else
printf("\n");
//int j;
//for (j = 0; j < classes; ++j) { //一個object有多個預測類別時進入,輸出大於給定閾值的同一個目標的不同類別資訊。控制是否進入for的是classes
// if (selected_detections[i].det.prob[j] > thresh && j != best_class) {
// printf("%s: %.0f%% ******image.c 303 ***** \n", names[j], selected_detections[i].det.prob[j] * 100);
// }
//}
}
/*******************dspeia 20181017***********************/
// image output
qsort(selected_detections, selected_detections_num, sizeof(*selected_detections), compare_by_probs);
for (i = 0; i < selected_detections_num; ++i) {
int width = im.h * .006;
if (width < 1)
width = 1;
/*
if(0){
width = pow(prob, 1./2.)*10+1;
alphabet = 0;
}
*/
//printf("%d %s: %.0f%%\n", i, names[selected_detections[i].best_class], prob*100);
int offset = selected_detections[i].best_class * 123457 % classes;
float red = get_color(2, offset, classes);
float green = get_color(1, offset, classes);
float blue = get_color(0, offset, classes);
float rgb[3];
//width = prob*20+2;
//rgb值為了定義label框的顏色
rgb[0] = red;
rgb[1] = green;
rgb[2] = blue;
box b = selected_detections[i].det.bbox;
//printf("%f %f %f %f\n", b.x, b.y, b.w, b.h);
int left = (b.x - b.w / 2.)*im.w;
int right = (b.x + b.w / 2.)*im.w;
int top = (b.y - b.h / 2.)*im.h;
int bot = (b.y + b.h / 2.)*im.h;
if (left < 0) left = 0;
if (right > im.w - 1) right = im.w - 1;
if (top < 0) top = 0;
if (bot > im.h - 1) bot = im.h - 1;
/*******************************/
int the_class = selected_detections[i].best_class;
//char cut_class[20] = { 0 }; //為了傳類名到cut函式的方法一
//strcpy(cut_class, names[the_class]);
//char cut_class = names[the_class];
float cut_pro = selected_detections[i].det.prob[the_class] * 100;
printf("******355 **cut_class :%s ...........cut_class:%.0f \n", names[the_class], cut_pro);
//printf(cut_class);
//printf("%f", cut_pro); //
/******dspeia ****/
int pre_x = left;
int pre_y = top;
int pre_h = bot - top;
int pre_w = right - left;
save_cut_image(pre_x, pre_y, pre_h, pre_w, i, im, names, cut_pro, the_class);
printf("/************ cut and save over *****************/ \n");
/********************************/
//int b_x_center = (left + right) / 2;
//int b_y_center = (top + bot) / 2;
//int b_width = right - left;
//int b_height = bot - top;
//sprintf(labelstr, "%d x %d - w: %d, h: %d", b_x_center, b_y_center, b_width, b_height);
draw_box_width(im, left, top, right, bot, width, red, green, blue);
if (alphabet) {
char labelstr[4096] = { 0 };
if (selected_detections[i].best_class != 0 && selected_detections[i].best_class != 1 && selected_detections[i].best_class != 2 && selected_detections[i].best_class != 3){
strcat(labelstr, names[79]); //加入這一句if,在label上寫other
}
else
{
strcat(labelstr, names[selected_detections[i].best_class]);
}
//int j;
//for (j = 0; j < classes; ++j) { //同一個object多個預測時,畫多個框,註釋了圖片上仍然畫第二框,只是cmd上不列印第二預測
// if (selected_detections[i].det.prob[j] > thresh && j != selected_detections[i].best_class) {
// strcat(labelstr, ", ");
// strcat(labelstr, names[j]);
// }
//}
image label = get_label_v3(alphabet, labelstr, (im.h*.03)); //畫出框,複製到im上
draw_label(im, top + width, left, label, rgb);
//image* pic -> label;
//const CvArr* label_copy = (CvArr*)&label; //**********************
//cvShowImage("*ima 394 label", label_copy); //***********dspeia plus test
free_image(label);
}
if (selected_detections[i].det.mask) {
image mask = float_to_image(14, 14, 1, selected_detections[i].det.mask);
image resized_mask = resize_image(mask, b.w*im.w, b.h*im.h);
image tmask = threshold_image(resized_mask, .5);
embed_image(tmask, im, left, top);
free_image(mask);
free_image(resized_mask);
free_image(tmask);
}
}
free(selected_detections);
}
/********************dspeia 20181017********************/
/*********** darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights */
void save_cut_image(int px, int py, int ph, int pw, int no, image m_img, char **names, float cut_pro, int the_class)
{
//cvShowImage("the enter", *m_img);
image copy = copy_image(m_img);
if (m_img.c == 3) rgbgr_image(copy);
int x, y, k;
char buff[256];
/*****************************/
//printf("%s: %.0f%% ******* image.c 292 *******", cut_clas, selected_detections[i].det.prob[best_class] * 100);
/**********************************/
sprintf(buff, "results//%s%.0f%%%d.jpg", names[the_class], cut_pro, no);
printf("****411** cut_class :%s ...........cut_class:%.0f ", names[the_class], cut_pro);//
printf(names[the_class]);
printf("%f",cut_pro); //
IplImage *disp = cvCreateImage(cvSize(m_img.w, m_img.h), IPL_DEPTH_8U, m_img.c);
//cvShowImage("**the enter", disp); //disp 為黑框亂碼
int step = disp->widthStep;
for (y = 0; y < m_img.h; ++y) {
for (x = 0; x < m_img.w; ++