Count on a tree 樹上 (u,v)的路上的第K小的權值(主席樹+樹剖lca
阿新 • • 發佈:2018-12-18
題目大意: 就是求在樹上 (u,v)的路上的第K小的權值
解題思路: 首先對於求第K小的問題 我們可以用主席樹搞 ,沒有問題, 但是對於一個樹形結構,我們需要將其轉化為線性,然後需要樹剖才能做.
然後考慮鏈上的第k值怎麼維護 , 發現如果樹剖計算的話 維護不了啊 因為(u,v)的路 可能在很多個鏈上,那麼不能對每個求第K值,這樣明顯是錯誤的啊,
然後我們知道主席樹其實就是維護了一個字首和
那麼我們可以對每一個節點到根節點建立字首和,就能找任意一個節點到根節點的第K值, 那麼根據主席樹的性質,我們就能夠計算(u,v)的路上的第K值了 只要在查詢的時候稍改變一下就行了
cnt = sum[ls[u]]+sum[ls[v]]-sum[ls[lca(u,v)]]-sum[ls[fa[lca(u,v)]]];
/// .-~~~~~~~~~-._ _.-~~~~~~~~~-. /// __.' ~. .~ `.__ /// .'// \./ \\`. /// .'// | \\`. /// .'// .-~"""""""~~~~-._ | _,-~~~~"""""""~-. \\`. /// .'//.-" `-. | .-' "-.\\`. /// .'//______.============-.. \ | / ..-============.______\\`. /// .'______________________________\|/______________________________`. #pragma GCC optimize("Ofast") #pragma comment(linker, "/STACK:102400000,102400000") #pragma GCC target(sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx) #include<bits/stdc++.h> using namespace std; #define pi acos(-1) #define s_1(x) scanf("%d",&x) #define s_2(x,y) scanf("%d%d",&x,&y) #define s_3(x,y,z) scanf("%d%d%d",&x,&y,&z) #define s_4(x,y,z,X) scanf("%d%d%d%d",&x,&y,&z,&X) #define S_1(x) scan_d(x) #define S_2(x,y) scan_d(x),scan_d(y) #define S_3(x,y,z) scan_d(x),scan_d(y),scan_d(z) #define PI acos(-1) #define endl '\n' #define srand() srand(time(0)); #define me(x,y) memset(x,y,sizeof(x)); #define foreach(it,a) for(__typeof((a).begin()) it=(a).begin();it!=(a).end();it++) #define close() ios::sync_with_stdio(0); cin.tie(0); #define FOR(x,n,i) for(int i=x;i<=n;i++) #define FOr(x,n,i) for(int i=x;i<n;i++) #define fOR(n,x,i) for(int i=n;i>=x;i--) #define fOr(n,x,i) for(int i=n;i>x;i--) #define W while #define sgn(x) ((x) < 0 ? -1 : (x) > 0) #define bug printf("***********\n"); #define db double #define ll long long #define mp make_pair #define pb push_back #define sz size #define fi first #define se second #define pf printf typedef long long LL; typedef pair <int, int> ii; const int INF=0x3f3f3f3f; const LL LINF=0x3f3f3f3f3f3f3f3fLL; const int dx[]={-1,0,1,0,1,-1,-1,1}; const int dy[]={0,1,0,-1,-1,1,-1,1}; const int maxn=1e2+7; const int _=1e5+10; const double EPS=1e-8; const double eps=1e-8; const LL mod=1e9+7; template<class T>inline T min(T a,T b,T c) { return min(min(a,b),c);} template<class T>inline T max(T a,T b,T c) { return max(max(a,b),c);} template<class T>inline T min(T a,T b,T c,T d) { return min(min(a,b),min(c,d));} template<class T>inline T max(T a,T b,T c,T d) { return max(max(a,b),max(c,d));} template <class T> inline bool scan_d(T &ret){char c;int sgn;if (c = getchar(), c == EOF){return 0;} while (c != '-' && (c < '0' || c > '9')){c = getchar();}sgn = (c == '-') ? -1 : 1;ret = (c == '-') ? 0 : (c - '0'); while (c = getchar(), c >= '0' && c <= '9'){ret = ret * 10 + (c - '0');}ret *= sgn;return 1;} inline bool scan_lf(double &num){char in;double Dec=0.1;bool IsN=false,IsD=false;in=getchar();if(in==EOF) return false; while(in!='-'&&in!='.'&&(in<'0'||in>'9'))in=getchar();if(in=='-'){IsN=true;num=0;}else if(in=='.'){IsD=true;num=0;} else num=in-'0';if(!IsD){while(in=getchar(),in>='0'&&in<='9'){num*=10;num+=in-'0';}} if(in!='.'){if(IsN) num=-num;return true;}else{while(in=getchar(),in>='0'&&in<='9'){num+=Dec*(in-'0');Dec*=0.1;}} if(IsN) num=-num;return true;} void Out(LL a){if(a < 0) { putchar('-'); a = -a; }if(a >= 10) Out(a / 10);putchar(a % 10 + '0');} void print(LL a){ Out(a),puts("");} //cerr << "run time is " << clock() << endl; int n,m; int w[_],b[_]; struct node{ int to,next; }G[_<<1]; int head[_],tot; int rt[_],ls[_*20],rs[_*20],sum[_*20],chairtree,siz; void build(int &rt,int l,int r){ rt=++chairtree; sum[rt]=0; if(l>=r)return ; int m =((r-l)>>1)+l; build(ls[rt],l,m); build(rs[rt],m+1,r); } void update(int& rt,int l,int r,int last,int pos){ rt=++chairtree; ls[rt]=ls[last]; rs[rt]=rs[last]; sum[rt]=sum[last]+1; if(l>=r) return ; int m=((r-l)>>1)+l; if(pos<=m) update(ls[rt],l ,m,ls[last],pos); else update(rs[rt],m+1,r,rs[last],pos); } int query(int rt,int l,int r,int last,int lca,int flca,int k){ if(l>=r) return l; int m=((r-l)>>1)+l; int cnt=sum[ls[rt]]+sum[ls[last]]-sum[ls[lca]]-sum[ls[flca]]; if(k<=cnt) query(ls[rt],l ,m,ls[last],ls[lca],ls[flca],k); else query(rs[rt],m+1,r,rs[last],rs[lca],rs[flca],k-cnt); } void dfs(int rt,int l,int r){ int m = ((r-l)>>1)+l; printf("%d",sum[rt]); if(l>=r) return ;printf("( "); dfs(ls[rt],l,m);printf("_%*d,",2,ls[rt]); dfs(rs[rt],m+1,r);printf("_%*d )",2,rs[rt]); } /** ChairTree end */ void add(int u,int v){ G[++tot].to=v,G[tot].next=head[u],head[u]=tot; G[++tot].to=u,G[tot].next=head[v],head[v]=tot; } int dep[_],fa[_],sz[_],son[_]; void dfs1(int u,int f,int d){ dep[u]=d,fa[u]=f,sz[u]=1,son[u]=0; for(int i=head[u],to;i;i=G[i].next){ to=G[i].to; if(to==f)continue; dfs1(to,u,d+1); sz[u]+=sz[to]; if(sz[son[u]]<sz[to])son[u]=to; } } int tree[_],top[_],pre[_],cnt; void dfs2(int u,int tp){ top[u]=tp,tree[u]=++cnt,pre[tree[u]]=u; update(rt[u],1,siz,rt[fa[u]],w[u]); if(!son[u])return; dfs2(son[u],tp); for(int i=head[u],to;i;i=G[i].next){ to=G[i].to; if(to==fa[u]||to==son[u])continue; dfs2(to,to); } } int Lca(int x,int y){ int fx=top[x],fy=top[y]; while(fx!=fy){ if(dep[fx]<dep[fy])swap(x,y),swap(fx,fy); x=fa[fx],fx=top[x]; } if(dep[x]>dep[y])swap(x,y); return x; } void solve() { s_2(n,m); FOR(1,n,i) s_1(w[i]),b[i]=w[i]; FOr(1,n,i) { int u,v; s_2(u,v); add(u,v); } fa[1]=0; sort(b+1,b+n+1); siz=unique(b+1,b+n+1)-(b+1); FOR(1,n,i) w[i]=lower_bound(b+1,b+siz+1,w[i])-b; build(rt[0],1,siz); dfs1(1,0,1); dfs2(1,1); while(m--) { int u,v,k; s_3(u,v,k); int lca=Lca(u,v); //cout<<lca<<endl; print(b[query(rt[u],1,siz,rt[v],rt[lca] ,rt[fa[lca]],k)]); } } int main() { //freopen( "1.in" , "r" , stdin ); //freopen( "1.out" , "w" , stdout ); int t=1; //init(); //s_1(t); for(int cas=1;cas<=t;cas++) { //printf("Case #%d: ",cas); solve(); } }