Detectron 儲存faster rcnn 測試結果,類別 置信度 座標
阿新 • • 發佈:2018-12-18
由於專案需要,要求獲取每張圖片中每個box的類別、置信度得分和bbox的座標資訊。
思路在inference階段,每infer一張圖片就新開一個txt檔案,txt檔案的每一行代表一個bbox得檢測資訊包括bbox的類別 置信度 和四個座標值
需要修改兩個檔案
1,修改 detectron-master/detectron/utils/vis.py 檔案
2,修改 detectron-master/tools/infer_simple.py 檔案
對於detectron-master/detectron/utils/vis.py 檔案主要修改vis_one_image()函式,添加了一個引數用於傳入txt的檔名字。
另外新新增一個函式get_class_and_confidence用於獲取類別和置信度,該函式放在get_class_string杉樹下面 如下圖:
函式get_class_and_confidence在函式vis_one_image中呼叫獲取類別和置信度得分,修改後的vis_one_image函式如下
def vis_one_image( im, im_name, output_dir, boxes, segms=None, keypoints=None, thresh=0.9, kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False, ext='pdf', out_when_no_box=False,tested_txt=None): """Visual debugging of detections.""" assert not (tested_txt==None),"please give the output full txt name" print("save detect reselt in : %s",tested_txt) save_to_txt = open(tested_txt,'w',encoding='utf-8') if not os.path.exists(output_dir): os.makedirs(output_dir) if isinstance(boxes, list): boxes, segms, keypoints, classes = convert_from_cls_format( boxes, segms, keypoints) if (boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh) and not out_when_no_box: return dataset_keypoints, _ = keypoint_utils.get_keypoints() if segms is not None and len(segms) > 0: masks = mask_util.decode(segms) color_list = colormap(rgb=True) / 255 kp_lines = kp_connections(dataset_keypoints) cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] fig = plt.figure(frameon=False) fig.set_size_inches(im.shape[1] / dpi, im.shape[0] / dpi) ax = plt.Axes(fig, [0., 0., 1., 1.]) ax.axis('off') fig.add_axes(ax) ax.imshow(im) if boxes is None: sorted_inds = [] # avoid crash when 'boxes' is None else: # Display in largest to smallest order to reduce occlusion areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_inds = np.argsort(-areas) mask_color_id = 0 for i in sorted_inds: bbox = boxes[i, :4] score = boxes[i, -1] if score < thresh: continue # show box (off by default) ax.add_patch( plt.Rectangle((bbox[0], bbox[1]), bbox[2] - bbox[0], bbox[3] - bbox[1], fill=False, edgecolor='g', linewidth=0.5, alpha=box_alpha)) # print(classes[i],score,bbox) mycls,confidence = get_class_and_confidence(classes[i], score, dataset) write_linedata = "class:"+mycls+" "+"score:"+confidence+" "+"xmin:"+bbox[0]+" "+"ymin:"+bbox[1]+" "+"xmax:"+bbox[2]+" "+"ymax:"+bbox[3] save_to_txt.write(write_linedata + '\n') if show_class: ax.text( bbox[0], bbox[1] - 2, get_class_string(classes[i], score, dataset), fontsize=3, family='serif', bbox=dict( facecolor='g', alpha=0.4, pad=0, edgecolor='none'), color='white') # show mask if segms is not None and len(segms) > i: img = np.ones(im.shape) color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 w_ratio = .4 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio for c in range(3): img[:, :, c] = color_mask[c] e = masks[:, :, i] _, contour, hier = cv2.findContours( e.copy(), cv2.RETR_CCOMP, cv2.CHAIN_APPROX_NONE) for c in contour: polygon = Polygon( c.reshape((-1, 2)), fill=True, facecolor=color_mask, edgecolor='w', linewidth=1.2, alpha=0.5) ax.add_patch(polygon) # show keypoints if keypoints is not None and len(keypoints) > i: kps = keypoints[i] plt.autoscale(False) for l in range(len(kp_lines)): i1 = kp_lines[l][0] i2 = kp_lines[l][1] if kps[2, i1] > kp_thresh and kps[2, i2] > kp_thresh: x = [kps[0, i1], kps[0, i2]] y = [kps[1, i1], kps[1, i2]] line = plt.plot(x, y) plt.setp(line, color=colors[l], linewidth=1.0, alpha=0.7) if kps[2, i1] > kp_thresh: plt.plot( kps[0, i1], kps[1, i1], '.', color=colors[l], markersize=3.0, alpha=0.7) if kps[2, i2] > kp_thresh: plt.plot( kps[0, i2], kps[1, i2], '.', color=colors[l], markersize=3.0, alpha=0.7) # add mid shoulder / mid hip for better visualization mid_shoulder = ( kps[:2, dataset_keypoints.index('right_shoulder')] + kps[:2, dataset_keypoints.index('left_shoulder')]) / 2.0 sc_mid_shoulder = np.minimum( kps[2, dataset_keypoints.index('right_shoulder')], kps[2, dataset_keypoints.index('left_shoulder')]) mid_hip = ( kps[:2, dataset_keypoints.index('right_hip')] + kps[:2, dataset_keypoints.index('left_hip')]) / 2.0 sc_mid_hip = np.minimum( kps[2, dataset_keypoints.index('right_hip')], kps[2, dataset_keypoints.index('left_hip')]) if (sc_mid_shoulder > kp_thresh and kps[2, dataset_keypoints.index('nose')] > kp_thresh): x = [mid_shoulder[0], kps[0, dataset_keypoints.index('nose')]] y = [mid_shoulder[1], kps[1, dataset_keypoints.index('nose')]] line = plt.plot(x, y) plt.setp( line, color=colors[len(kp_lines)], linewidth=1.0, alpha=0.7) if sc_mid_shoulder > kp_thresh and sc_mid_hip > kp_thresh: x = [mid_shoulder[0], mid_hip[0]] y = [mid_shoulder[1], mid_hip[1]] line = plt.plot(x, y) plt.setp( line, color=colors[len(kp_lines) + 1], linewidth=1.0, alpha=0.7) save_to_txt.close()
對於detectron-master/tools/infer_simple.py 檔案,主要修改main函式,建立了一個資料夾(預設在detectron-master目錄一下)output_txts用來存放每一張圖片的txt。
修改後的main()函式
def main(args): logger = logging.getLogger(__name__) merge_cfg_from_file(args.cfg) cfg.NUM_GPUS = 1 args.weights = cache_url(args.weights, cfg.DOWNLOAD_CACHE) assert_and_infer_cfg(cache_urls=False) assert not cfg.MODEL.RPN_ONLY, \ 'RPN models are not supported' assert not cfg.TEST.PRECOMPUTED_PROPOSALS, \ 'Models that require precomputed proposals are not supported' model = infer_engine.initialize_model_from_cfg(args.weights) dummy_coco_dataset = dummy_datasets.get_coco_dataset() if os.path.isdir(args.im_or_folder): im_list = glob.iglob(args.im_or_folder + '/*.' + args.image_ext) else: im_list = [args.im_or_folder] script_path = os.path.dirname(os.path.abspath(__file__)) txt_path = "{0}/../output_txts/".format(script_path) if not os.path.exists(): od.makedirs(txt_path) else: print("path exists,it should be removed!!") for i, im_name in enumerate(im_list): out_name = os.path.join( args.output_dir, '{}'.format(os.path.basename(im_name) + '.' + args.output_ext) ) logger.info('Processing {} -> {}'.format(im_name, out_name)) im = cv2.imread(im_name) timers = defaultdict(Timer) t = time.time() with c2_utils.NamedCudaScope(0): cls_boxes, cls_segms, cls_keyps = infer_engine.im_detect_all( model, im, None, timers=timers ) print logger.info('Inference time: {:.3f}s'.format(time.time() - t)) for k, v in timers.items(): logger.info(' | {}: {:.3f}s'.format(k, v.average_time)) if i == 0: logger.info( ' \ Note: inference on the first image will be slower than the ' 'rest (caches and auto-tuning need to warm up)' ) #add save txt path txt_name = im_name.split(".")[0] + '.txt' save_txt_path = txt_path + txt_name vis_utils.vis_one_image( im[:, :, ::-1], # BGR -> RGB for visualization im_name, args.output_dir, cls_boxes, cls_segms, cls_keyps, dataset=dummy_coco_dataset, box_alpha=0.3, show_class=True, thresh=args.thresh, kp_thresh=args.kp_thresh, ext=args.output_ext, out_when_no_box=args.out_when_no_box, tested_txt=save_txt_path )