1. 程式人生 > >Half-wave potential(半波電位)推導之一

Half-wave potential(半波電位)推導之一

Test condition

  1. No stirring;
  2. Fast kinetics
  3. Step to an arbitrary potential suddenly
  4. Cottrell-like experiment Half reaction:

(1)O+neRO+ne{\rightleftharpoons} R \tag{1} In the case of Nerstian equation, the potential can be expressed as (2)E=E0RTnFlnCO(0,t)CR(0,t)E=E^{0'}-\dfrac {RT}{nF} \ln \dfrac {C_{O}(0,t)}{C_{R}(0,t)} \tag {2}

Here we define (3)θ=CO(0,t)CR(0,t)=exp[nFRT(EE0)]\theta=\dfrac {C_{O}(0,t)}{C_{R}(0,t)}=\exp \left [\dfrac{nF} {RT} (E-E^{0'}) \right] \tag{3} The governing equations of the reductant and oxidant will be (4)CO(0,t)t=DO2CO(
0,t)x2\dfrac{\partial C_O(0,t)}{\partial t}=D_O \dfrac{\partial ^2 C_O(0,t)}{\partial x^2} \tag{4}
(5)CR(0,t)t=DR2CR(0,t)x2\dfrac{\partial C_R(0,t)}{\partial t}=D_R \dfrac{\partial ^2 C_R(0,t)}{\partial x^2} \tag{5}

Initial condition:(Concentration is homogeneous) (6)

CO(x,0)=CO C_O(x,0)=C_O ^* \tag{6} (7)CR(x,0)=0 C_R(x,0)=0 \tag{7} Boundary conditions: (8)CO(,t)=CO(t>0)C_O(\infty,t)=C_O ^* \quad (t>0) \tag{8} (9)CR(,t)=0(t>0)C_R(\infty,t)=0 \quad (t>0) \tag{9} (10)DOCO(0,t)x+DRCR(0,t)x=0D_O \dfrac{\partial C_O(0,t)}{\partial x} +D_R \dfrac{\partial C_R(0,t)}{\partial x} =0 \tag{10} Apply Laplace transform on Equation(4)-(10) to solve the equations Laplace transform function (11)F(s)=0f(t)estdtF (s)=\int_0^\infty f(t)e^{-st}dt \tag{11} Apply the transformation on these equations: (12)CO(,s)=COs\overline C_O(\infty,s)=\dfrac{C_O^*}{s} \tag{12} (13)CO(0,s)=0\overline C_O(0,s)=0 \tag{13}

(14)DOCO(0,t)x+DRCR(0,t)x=0D_O \dfrac{\partial \overline C_O(0,t)}{\partial x} +D_R \dfrac{\partial \overline C_R(0,t)}{\partial x} =0 \tag{14} Using (12) and (13) we can get the solution (15)CO(x,s)=A(s)exp(sDOx)+COs\overline C_O(x,s)=A(s) \exp{\left (-\sqrt{\dfrac{s}{D_O}}x \right)}+\dfrac{C_O^*}{s} \tag{15} (16)CR(x,s)=B(s)exp(sDRx)\overline C_R(x,s)=B(s) \exp{\left (-\sqrt{\dfrac{s}{D_R}}x \right)} \tag{16} Apply (14) the relation between A(s)A(s) and B(s)B(s) (17)B(s)=A(s)ξB(s)=-A(s)\xi \tag{17}, where (18)ξ=DODR\xi = \sqrt{\dfrac{D_O}{D_R} } \tag{18} Hence the results are: (15)CO(x,s)=A(s)exp(sDOx)+COs\overline C_O(x,s)=A(s) \exp{\left (-\sqrt{\dfrac{s}{D_O}}x \right)}+\dfrac{C_O^*}{s} \tag{15} (16)CR(x,s)=A(s)ξexp(sDRx)\overline C_R(x,s)=-A(s)\xi \exp{\left (-\sqrt{\dfrac{s}{D_R}}x \right)} \tag{16}